

Panel Data Evidence on the Relationship between Economic Growth, Electricity Consumption and CO₂ Emissions in the GCC.

Hatem Hatef Abdulkadhim Alyasari¹, Obaid Mahmmood Muhsin Alzawbaee² ¹Accounting Department, faculty of Administration And Financial Sciences, Cihan University – Sulaimani, Sulaimani, Iraq

²Business Administration Department, faculty of Administration And Financial Sciences, Cihan University – Sulaimani, Sulaimani, Iraq

Abstract:

This paper intended to examine the impact of CO_2 and electricity consumption to growth the growth of Gulf Cooperation Council (GCC) economies. The period covered range from 1996 to 2013. This study formulates five panel data regression models. The empirical results indicate that capital accumulation and export are very important in terms of growth in the GCC economies. In addition, we found evidence that higher CO_2 and import decreases economic growth. At the same time, we find that, although electricity consumption contributes positively to the growth of GDP, but it is statically insignificant. Empirical findings suggest that: As long as the gross capital formation plays a key role in economic growth, thus they must encourage an increase in gross capital formation. In addition, since CO_2 contributes negatively to economic growth, policymakers should design and implement policies that enhance environmental friendly energy production and utilization.

Keywords: Economic growth, Electricity consumption, CO2 emissions, Panel data.

الملخص:

تهدف هذه الورقة إلى دراسة تأثير استهلاك ثاني أكسيد الكربون والكهرباء على نمو اقتصادات مجلس التعاون الخليجي. تتراوح الفترة المدروسة الفترة من 1996 إلى 2013. تم توصيف خمسة نماذج انحدار خاصة بالبيانات اللوحية (الدمج). تشير النتائج المقدرة إلى أن تراكم رأس المال والصادرات مهمان للغاية لعملية النمو في اقتصادات دول مجلس التعاون الخليجي. بالإضافة إلى ذلك ، وجدنا دليلًا على أن ارتفاع ثاني أكسيد الكربون والاستير ادات يساهمان سلبا في عملية النمو التعاون الخليجي. تا وح ذلك ، وجدنا دليلًا على أن ارتفاع ثاني أكسيد الكربون والاستيرادات يساهمان سلبا في عملية النمو القتصادي. في الوقت نفسه ، ذلك ، وجدنا دليلًا على أن ارتفاع ثاني أكسيد الكربون والاستيرادات يساهمان سلبا في عملية النمو الاقتصادي. في الوقت نفسه ، نحد أنه على الرغم من أن استهلاك الكهرباء يساهم بشكل إيجابي في نمو الناتج المحلي الإجمالي ، إلا أنه غير معنوي احصائيا. تشير النتائج العملية إلى ما أن استهلاك الكهرباء يساهم بشكل إيجابي في نمو الناتج المحلي الإجمالي ، إلا أنه غير معنوي احصائيا. تشير النتائج الملي الرغم من أن استهلاك الكهرباء يساهم بشكل إيجابي في نمو الناتج المحلي الإجمالي ، إلا أنه غير معنوي احصائيا. تشير النتائج العملية إلى ما يلي: طالما أن تكوين رأس المال الإجمالي يلعب دورًا رئيسيًا في النمو الاقتصادي ، فيجب تشجيع زيادة تشير النتائج المالي الإجمالي . وأس المال الإجمالي يلعب دورًا رئيسيًا في النمو الاقتصادي ، فيجب تشجيع زيادة تكوين رأس المال الإجمالي واحيني أكسيد الكربون يساهم بشكل سلبي في النمو الاقتصادي ، يجب تركوين رأس المال الإجمالي راس المال الإجمالي . بالإضافة إلى ذلك ، نظرًا لأن ثاني أكسيد الكربون يساهم بشكل سلبي في النمو الاقتصادي ، يجب على واصعي السياس تصميم وتنفيذ سياسات تحميم وتنفيذ سياسات تعاني مالي المانة المالة الصري ألمية المريون يستهم الني والسالي والاقتصادي . يحب على واضعي السياسات تصميم وتنفيذ سياسات تعزز إنتاج الطاقة الصديقة للبيئة واستخدامها.

پوخته:

مەبىسىت لىم چەند پەرەيە شىكردنەوەى كارى گەرنتى بەكارەينانى دووەم ئۆكسىدى كاربۆن و كارەبا لەسەر گەشە ئابوريەكانى ئەنجومەنى ھاربيكارى

Introduction

The central goal of an economy is to attain the sought after level of development and economic growth and to sustain at this level. Nations can't meet this goal without a number of difficulties. One of the most vital of these difficulties is the increases in (CO_2) emission and global warming and climate changes.

In the last few decades' number of studies has confirmed the nexus between energy consumption in general and electricity consumption in particular and economic growth. Some empirical results support the conservative hypothesis (Glasure, 2002; Ghali and El-Sakka, 2004; Akinlo, 2008; Apergis and Payne, 2009; Mohapatra and Giri 2015; Wang et.al, 2016). The gas emissions, from the different resources used in producing energy, increase the amount of carbon dioxide, which harms the green space as well as inflicting irreparable damages on the atmosphere. Thus CO₂ emissions must be reduced. Recognizing the importance of taking corrective measures to condense global warming several countries have signed the Kyoto Protocol and agreed to meet the target set under the Kyoto Protocol.

New data on CO_2 emissions indicate a high level and significant contribution to the GCC at the global level. Energy extraction, conversion sectors, particularly oil drilling, and electricity production are most reasons behind increasing CO_2 emissions. Especially if the generation of electricity is based on the combustion of fossil fuels. However, Some studies (e.g., Soytas et al., 2007; Soytas and Sari, 2009; Lean and Smyth, 2009) link this problem to the large increase in electricity consumption, and it is described by some as irrational.

Figure1. CO2 total emissions (kt) for GCC

Figure 1 show that KSA lead the GCC countries in its CO2 emission contribution, followed by the UAE, Kuwait, Qatar, Oman, and Bahrain. All the countries show an increasing trend in their CO₂ emissions. (Qader, 2009).

This study analyzes the relationship between electricity consumption, CO2 emissions, and economic growth. Numerous studies have examined this issue (see for example, Grossman and Krueger 1991; Shafik 1994; Fatai, et al., 2004; Narayan and Smyth, 2005; Narayan and Singh 2007; Song et al. 2008; Soytas and Sari 2009; Chandran, Sharma, and Madhavan, K. 2010; Christopher and Douglason 2011; Borhan et al. 2012; Borhan, Ahmed and Hitam 2013; Shahbaz et al., 2014; Hamdi et al., 2014; Omri et al., 2015; Rashid et.al, 2017).

Although energy consumption in many studies is considered to be an important variable in achieving high rates of economic growth, to the extent that they have been adopted in many quantitative studies as one of the production factors, such as labor and capital. The problem of environmental pollution is not only a quality of Life mater, but beyond that it has negatively affected the overall productivity in the economy. The issue of environmental pollution has become a subject of great interest to researchers, policy makers, politicians and civil society at national and international levels. This interest is due to emission levels of climate changes.

This study attempts to address the relationship of CO_2 , electricity consumption, labor, capital, exports and imports to the economic growth of the GCC countries over the period from 1996 to 2013. A panel data set for these countries will be used. Five models will be employed, namely: pooled ordinary least squares, and one way and two ways fixed effect models and one way and two random effect models. The importance of the study lies in the limited studies related to the Gulf countries, in addition to the its reliance on models not used in the previous studies.

The remainder of the study is structured as follows: Section 2 deals with the literature review. Section 3 econometric method and data. Section 4 presents the results and their interpretations. Section 5 reports Conclusion and Policy Recommendations.

2. Literature Review

In the last few decades a large volume of empirical studies has examined the relationship between economic growth, CO_2 and energy or electricity consumption. Studies differ in the use of econometric methodologies, data types, region, time periods. The results reached by those studies according to the number of countries covered, can be

Author(S)	Countries	Methodology	Period	Conclusions
Lee (2005)	8 developing	FMOLS	1975–	$EC \rightarrow GDP$
	countries		2001	
Richmond and	36 nations	EKC hypothesis	1973–	No relationship
Kaufman			1997	
(2006)				
Masih and	Malaysia,	Error-correction	1955–	Non-cointegrated
Masih (1996)	Singapore, and	model	1990	
	the Philippines			
Azomahou et	100 countries	nonparametric	1960–	Linear relationship between
al. (2006)		panel approach	1996	GDP and CO2
Al Iriani	Gulf Cooperation	panel VAR	1971–	$GDP \rightarrow E$
(2006)	Council		2002	
Chen et al.	10 developing	panel-based error	1971-	LR: GDP \leftrightarrow EC
(2007)	countries in Asia.	correction model	2001	
Lee et al.	22 OECD	panel-based ECM	1960–	$E \rightarrow GDP$
(2008)	countries		2001	$K \rightarrow GDP$
Lee and	16 Asian countrie	panel-based ECM	1971–	LR EC \rightarrow GDP.
Chang (2008)			2002	
Apergis and	6 central	Panel-VECM	1971-	$C \leftrightarrow Y ; E \to C Y \to C$
Payne (2009)	American		2005	
	countries			
Ciarreta, A.,	12 European	VECM estimated	1970-	$E \leftrightarrow GDP$ and weak
Aarraga , A.,	countries	by system GMM	2007	evidence between EC and
(2010)				EP.
Lean and	5 Asean countries	panel VECM	1980–	$C \rightarrow E$
Smyth (2010)			2006	
Arouri et al.	12 MENA	Panel unit root	1981–	LR: $E \leftrightarrow C$
(2012)	countries	tests and	2005	
		cointegration		
Govindaraju	China and India	VECM	1975-	SR: EC and CO ₂ (India)
and			2001	LR: EC and CO ₂ (China)
Tang (2013)				
Stolyarova	93 countries	Dynamic panel	1960-	$GDP \rightarrow, CO2$
Elena (2013)		models	2008	

Table 1. Summary of previous empirical studies

The Scientific Journal of Cihan University – Slemani
Volume (4), Issue (1), june 2020
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

PP: 33-47

Omri	Anis	14 MENA	Cobb-Douglas	1990-	$E \rightarrow CO2$
(2013)		countries	production	2011	
			function based on		
			the panel data		
		GCC	SUR, PMG	1980-	Positive association
Salahudd	lin			2012	between E and CO2; and
and	Jeff				between GDP and E. GDP
(2014)					\neq CO2
Rezitis	and	Nine South and	PVA and	1990-	Causality effects between
Shaikh		Southeast Asian	Causality Analysis	2012	energy consumption and
Mostak ((2015)	countries			economic growth
Behera	and	17 South East and	FMOLS DOLS	1980-	Cointegrating relationship
Dash (20	017)	South Asian		2012	existed among the studied
		countries (SSEA).			variables

Notes: definitions of notation: \rightarrow , \leftrightarrow and \neq represent unidirectional, bi-directional causality and no causalitndy, respectively. Abbreviations defined as follows: SL and LR refer to short run and long run; CO₂, carbon emissions; L, labor; K, capital; ELC, electricity consumption; EC, electricity price; E, energy consumption; FDI, foreign direct investment; GDP, real or nominal GDP or GNP; EP, electricity price. Alternative methodologies ARDL bounds test (ARDL); Abbreviations for models: PVA, Panel Vector Autoregression Approach; VAR, vector autoregressive model; GMM, Generalized method of moment, FMOLS, full-modified OLS; DOLS, Dynamic OLS; EKC, Environment Kuznet's Curve; and VECM, vector error correction model.

categorized into two main strands: growth, CO₂ emission and economic growth for more than one country. For the purpose of this paper, we focus on studies that explore panel data properties. First strand based on the country level (e.g. Soytas and Sari, 2003; Oh and Lee, 2004; Altinay and Karagol, 2005; Lee and Chang, 2005; Yoo, 2005; Halicioglu, 2009; Ciarreta and Zarraga, 2009; Li et al., 2011; Shahbaz, 2013; Mohiuddin et al. 2016; Wang et al, 2016; Li et al, 2017).

The second strand provides empirical evidence on the relationship between economic of previous panel studies exploring relationships between energy or electricity consumption, CO2 and economic growth. Table 1 summarizes the previous empirical findings of the relationship between energy or electricity consumption, CO_2 and economic growth for a couple or a group of countries.

3. Econometric Method and Data

Panel data set can capture variations along both individual and cross section unit (country, region, state, consumer, individual, etc.). The combination of time series with cross-section can boost the quality and quantity of data in ways that would be not possible when using only one of these two dimensions (Gujarati, 2003).

In the study of panel data three frequently employed models, namely pooled ordinary least squares, fixed effects model and random effects model. In the present study, we estimated the first model in two estimation methods and use two versions of the other two models.

Consider an economic relationship that has a gross domestic product representing economic growth as a dependent variable, GDP, and five explanatory variables. The panel data consist of 6-countries and 18-time periods.

$$LnGDP_{it} = \beta_0 + \beta_{1i}lnCO2_{it} + \beta_{2i}lnFD_{it} + \beta_{3i}lnOP_{it} + \beta_{4i}lnELC_{it} + \beta_{5i}lnK_{it} + \varepsilon_{it} \dots \dots \dots (1)$$

Where, GDP is the gross domestic product, CO2 is the CO2 emission per capita, FD is the financial development, OP is the trade openness, ELC is the electricity consumptions, and K is the capital stock. β_0 is the constant. ϵ_{it} is the error term for country i in the period t, satisfies all the standard assumptions? j_i are the estimated coefficients of all independent variables which j = 1, ..., 5. The subscript I =1,6 denotes the six GCC countries. The subscript t = 1, ...,18 denotes the time period, (1996-2013). Table 2 summarizes all variables used in this study.

Although on prior we expect that the GCC countries have too much similarities between them, but still there are some differences between them, at least in their country sizes, economics endowments, geographical locations, political and economic policies, etc. Heterogeneity among the studied countries could result in biasedness of the estimated parameters. Accordingly, it seems reasonable to account for the heterogeneity among the GCC countries.

Variable	Indicator Name	Source				
CO2	CO2 emissions (metric tons	WDI	from	The	World	Bank,
	per capita)	http://ww	ww.worldba	nk.org/		
EC	Energy Consumption (kg of	WDI	from	The	World	Bank,
	oil equivalent per capita)	http://ww	ww.worldba	nk.org/		
FD	Domestic credit to private	WDI	from	The	World	Bank,
	sector (% of GDP)	http://www.worldbank.org/				
GDP	GDP per capita (constant	WDI	from	The	World	Bank
	2010 US\$)	http://ww	ww.worldba	nk.org/		
Κ	Gross fixed capital formation	Penn W	orld Table	9.0. provid	ded by Feenstr	ra et al.,
	(constant 2010 US\$)	available for download at <u>www.ggdc.net/pwt</u>				
TOP	Trade (% of GDP)	WDI	from	The	World	Bank
		http://www.worldbank.org/				

Table 2. Variables definition

Respecification of model (1) that can incorporate unobservable country effects would be as follows:

$$lnGDP_{it} = \beta_0 + u_i + \beta_{1i}lnCO2_{it} + \beta_{2i}lnFD_{it} + \beta_{3i}lnOP_{it} + \beta_{4i}lnELC_{it} + \beta_{5i}lnK_{it} + u_{it} \dots (2)$$
$$u_{it} = \mu_i + \varepsilon_{it}$$

Where, i being GCC countries unobservable effects.

At this time, μ_i is a random variable in the fixed effects model, and it is assumed that there is correlation with the explanatory variable. In other words,

 $Cov(\mu_i, X_{it}) \neq 0$

The component i represent all unobserved factors that vary across countries, but are constant over time. The component ε_{it} represents all unobserved factors that vary across countries and time. Having multiple years of data for each country enables the inclusion of time country, thereby controlling for a range of time-invariant country characteristics, which may baise the estimated coefficients. Thus, the fixed effects model (3) can be extended to count for both individual as well as time effects variation this would be the two-way fixed effects model.

$$lnGDP_{it} = \beta_0 + \beta_{1i}lnCO2_{it} + \beta_{2i}lnFD_{it} + \beta_{3i}lnOP_{it} + \beta_{4i}lnELC_{it} + \beta_{5i}lnK_{it} + u_{it} \dots \dots (3)$$
$$u_{it} = \gamma_t + \mu_i + \varepsilon_{it}$$

However, μ_i is constant in the time series' direction, γ_t is constant in the cross section direction. Individual effects μ_i , and the time effect γ_t are each random variable, and the explanatory variable and the individual effect, the explanatory variable and the time effect are correlated (Greene, 2007).

For fixed effect model estimation, there are two ways which are within effect and between effect estimation. The estimators produce identical slope of non-dummy independent variables, but they produce different parameter estimates (Wooldridge, 2012).

As an alternative to the individual fixed effects model, we may consider a random effects formulation. The difference between the Fixed Effect Model and the random effect model is that the latter handles the constants for each section not as fixed, but as random parameters. The one way random effects model of equation (1) might be written as:

$$\ln GDP_{it} = \beta_0 + \beta_{1i} \ln CO2_{it} + \beta_{2i} \ln FD_{it} + \beta_{3i} \ln OP_{it} + \beta_{4i} \ln ELC_{it} + \beta_{5i} \ln K_{it} + u_{it} \dots \dots (4)$$

$$u_{it} = \gamma_t + \mu_i + \varepsilon_{it}$$

The random effects model depends on both the cross-section and the time series within it, the error components models are referred to as a two-way random effects model. In that case, the error term should be uncorrelated with the time series component and the cross-sectional (group) error. The orthogonality of these components allows the general error to be decomposed into cross-sectional specific, temporal, and individual error components.

$$LnGDP_{it} = \beta_0 + \beta_{1i}lnCO2_{it} + \beta_{2i}lnFD_{it} + \beta_{3i}lnOP_{it} + \beta_{4i}lnELC_{it} + \beta_{5i}lnK_{it} + u_{it} \dots (5)$$

$u_{it} = \gamma_t + \mu_i + \epsilon_{it}$

Random effect μ_i is assumed to be constant in the time dimension, tis constant in the cross section direction, and each is a random variable. Furthermore, it is assumed that explanatory variables and individual effects, explanatory variables and temporal effects are uncorrelated.

4. Results of the analysis:

4.1 Panel Unit Root Tests Results

In table 3 the results of the LLC, IPS, Fisher-ADF, and Fisher-PP panel unit root tests. We have performed each test for the level and first difference of the variables employed in this study.

For the variables in level form, the null hypothesis of a unit root cannot be rejected for the IPS, Fisher-ADF, and Fisher-PP tests, except for export variable when LLC test is considered, at the 1% significance level for all variables. After taking the first difference of variables, the four tests rejected the null hypothesis at the 1% significance level.

Form	Variables	L.LC	IPS	ADF-Fisher	PP-Fisher	Conclusions
	LN GDP		Level			Non-Stationary
		0.01785	0.61535	6.79244	7.65575	
		(-0.5071)	(-0.7308)	(-0.871)	(-0.8114)	
	LN K	-0.90719	-0.93043	14.0144	10.4504	Non-Stationary
		(0.1822)	(0.1761)	(0.2998)	(0.5765)	
	LN ELC	-0.83222	0.00995	10.6173	12.0889	Non-Stationary
		(0.2026)	(0.504)	(0.562)	(0.4386)	
	LN EXP	-2.0471	-1.42408	17.7694	11.3142	Non-Stationary
		(0.0203) ^b	(0.0772) ^c	(0.1229)	(0.5022)	
	LN IMP	-1.02567	-0.27135	10.9832	9.46654	Non-Stationary
		(0.1525)	(0.3931)	(0.5304)	(0.6626)	
	LN CO2	-0.83222	0.00995	10.6173	12.0889	Non-Stationary
		(0.2026)	(0.504)	(0.562)	(0.4386)	
		First Diffe	rences	·		
	LN GDP	-8.32589	-6.87733	56.5489	59.4052	Stationary
		$(0.0000)^{a}$	$(0.0000)^{a}$	(0.0000) ^a	(0.0000) ^a	
	LN K	-3.97704	-4.373	39.1206	60.1272	Stationary
		$(0.0000)^{a}$	$(0.0000)^{a}$	$(0.0000)^{a}$	(0.0000) ^a	
	LN ELC	-11.3735	-10.0412	80.4666	85.056	Stationary
		$(0.0000)^{a}$	$(0.0000)^{a}$	$(0.0000)^{a}$	$(0.0000)^{a}$	
	LN EXP	-6.28427	-5.61526	48.2082	71.5171	Stationary
		$(0.0000)^{a}$	$(0.0000)^{a}$	$(0.0000)^{a}$	$(0.0000)^{a}$	
	LN IMP	-5.5903	-5.68154	49.019	64.5795	Stationary
		(0.0000 ^a	$(0.0000)^{a}$	$(0.0000)^{a}$	$(0.0000)^{a}$	
	LN CO2	-11.3735	-10.0412	80.4666	85.056	Stationary
		(0.0000 ^a	$(0.0000)^{a}$	$(0.0000)^{a}$	$(0.0000)^{a}$	

Table 3. panel uata unit 1001 test	Table 3:	panel	data	unit	root	tests
------------------------------------	----------	-------	------	------	------	-------

Notes: the figures in brackets denote the probabilities. ^a Denotes 1% level of significance; ^b denotes 5% level of significance; and ^c denotes 10% significant level.

Therefore, we can conclude that all variables (in first differences) are non-stationary and integrated of order one or I (1). This implies that the series of variables may exhibit a valid long-run relationship.

4.2. Panel Cointegration Test Results

For the robustness check, this paper used Pedroni Residual Cointegration Test. Table 4 reports the results of the panel cointegration tests. Results indicate that most of test statistics based on both within dimension and group-based approach statistics demonstrate the rejection of null

Estimates	Statistic	Prob.	Statistic	Prob.
Panel v-Statistic	0.209	0.417	-1.279	0.900
Panel rho-Statistic	1.371	0.915	1.390	0.918
Panel PP-Statistic	-3.019	0.001 ^a	-2.597	0.005 ^a
Panel ADF-Statistic	-2.985	0.001 ^a	-2.589	0.005 ^a
Group Statistics				
Group rho-Statistic	2.247	0.988		
Group PP-Statistic	-3.125	0.001 ^a		
Group ADF-Statistic	-3.000	0.001 ^a		

Table 4: Panel co-integration tests (Dependent variable: Real GDP)

Notes: ^a indicate that the test statistic is significant at the 1 % level.

hypothesis of no cointegration in the favor of alternative that economic growth and the independent variables included in this study are cointegrated in GCC countries.

4.3. Model Selection

Table 5 shows the RMSEs for the six estimated models. It is clear that POLS model is the worst with an RMSE much larger than those from the other five models. The next smallest RMSE was obtained from the LSDV and the within fixed effect. The FEM (two way) gives the lowest RMSE. Therefore, the two way fixed effect model has been selected to quantify the relationship between economic growth and the selected independent variables.

Model	RMSE
POLS	0.121697
LSDV	0.072011
FEM (one way)	0.072011
FEM (two way)	0.069280
REM (one way)	0.121697

Table 5: Root Mean Squared Error for each of the six estimated models

REM (two way)

0.104383

4.4. Estimation Results and Discussion

Estimated results of the panel regression models reported in table 6. As expected, we find that export has positive and significant impacts on economic growth in the GCC countries. This finding justified by the fact that hydrocarbon export still plays a significant role in the Gulf economies, Hvidt (2013). The result in line with Hamdan (2016) for 17 Arab countries and Altaee & Al-Jafari (2016) for KSA.

From Table 7, it is clear that capital input has the second highest positive effect on economic growth. The coefficient of capital implies that 1 per cent increase in investment leads to about 36 per cent increase in economic growth. This implies that capital is an important factor of production; therefore, it stimulates economic growth. The findings are in line with those of Abdouli & Hammami (2017) for 17 MENA countries, Wang et al. (2011) for China, Shahbaz et al. (2012) for Pakistan, and Omri & Kahouli (2013) for 13 MENA countries.

Results indicate a negative impact for import on economic growth. The coefficient value of - 0.1447 proposes that the GCC could be adversely affected due to the inflow of imports.

X 7 ' 1 1	DOLG	LODU	(One way)	(Two way)	(One way)	(Two way)
Variables	POLS	LSDV	FEM	FEM	REM	REM
C	-0.1190	1.9384	1.9384	3.5147	-0.1190	-0.2410
C	(0.7254)	(0.0326)**	(0.0044)***	(0.0285)**	(0.6581)	(0.4738)
	0.2953	0.3204	0.3204	0.3644	0.2953	0.3030
	$(0.0000)^{***}$	$(0.0000)^{***}$	$(0.0000)^{***}$	$(0.0000)^{***}$	$(0.0000)^{***}$	$(0.0000)^{***}$
INIEC	0.0684	0.1888	0.1888	0.0544	0.0684	0.1090
LN LEC	$(0.0505)^{*}$	$(0.0125)^{**}$	$(0.0125)^{**}$	(0.6765)	$(0.0739)^{*}$	$(0.0189)^{**}$
INEVD	0.9253	0.4635	0.4635	0.4590	0.9253	0.8693
LIN EAP	$(0.0000)^{***}$	$(0.0000)^{***}$	$(0.0000)^{***}$	$(0.0000)^{***}$	$(0.0000)^{***}$	$(0.0000)^{***}$
	-0.2451	-0.1797	-0.1797	-0.1447	-0.2451	-0.2597
LIN IIVIP	$(0.0000)^{***}$	(0.0002)***	$(0.0002)^{***}$	(0.0149)**	$(0.0000)^{***}$	$(0.0000)^{***}$
	-0.0588	-0.0982	-0.0982	-0.0965	-0.0588	-0.0300
CO_2	$(0.0180)^{**}$	$(0.0570)^{*}$	$(0.0570)^{*}$	(0.1131)	(0.0010)***	(0.2082)
D2		0.5906				
		$(0.0000)^{***}$				
D2		0.2243				
D3		(0.0047)***				
D4		0.4484				
D4		$(0.0000)^{***}$				
D5		0.7928				
05		$(0.0000)^{***}$				
D6		0.8041				
		$(0.0880)^{*}$				
Adjusted R ²	0.985926	0.994818	0.994818	0.994185	0.985926	0.974568

Table 6: POLS.	one & two way	v FEMs and	one & two wa	v REMs estimate	s for GCC.
		I LIVIS unu		iy ixiniis cominate	

Notes: Values in parenthesis are the estimated p-values. ***Coefficient significant at the 1% level, ** Coefficient

significant at the 10% level, and * Coefficient significant at the 5% level.

In any event, the rise in per capita income and the high level of consumption leads to allocate a large part of imports to the import of luxury goods, which does not make a positive contribution to the process of economic growth. This result confirms the result obtained by Altaee & Al-Jafari (2016) for KSA, and similar to that of Mushtaq (2014), for China, Indonesia, Japan, Malaysia, Pakistan, Philippines, Sri Lanka and Thailand.

The obtained empirical results from this paper indicated that carbon dioxide (CO_2) emissions effect negatively economic growth while the energy consumption effect it positively. In fact, a 1% increase in energy consumption raises economic growth of about 5.4 %. However, the coefficient associated with electricity variable is not significant. At the same time, a 1% increase in CO_2 emissions reduces economic growth by about 10%.

5. Conclusion and Policy Recommendations

In this study we have analyzed the impact of electricity consumption, CO₂ emission, export, import, and capital on economic growth in the GCC countries, namely KSA, Bahrain, UAE, Kuwait, Qatar, and Oman, by employing long annual data from 1996 to 2013. To appropriately deal with static panel models, we employed ordinary least squares (OLS), two & one way fixed effects (FE) and two & one-way random effect (RE) models.

In terms of recommendations and suggestions we can say, based on estimation results the following:

Firstly, CO_2 emission has negative impact on economic growth. Therefore, to mitigate the climate change effect, there is a need for collaboration among GCC countries. Policymakers should implement policies that encourage environmental friendly energy production and utilization as well as green technologies.

Secondly, according to our finding, export is the most important driver to economic growth. This gives a support for export -led growth hypothesis in the GCC countries. Thus, a great attention must be directed towards diversifying the GCC economies.

Thirdly, capital proves to be another important contributor to economic growth of the GCC members. Accordingly, GCC countries must increase their gross capital formation.

Fourthly, since import plays negative role in the economic growth process of the GCC countries, they should decrease their imports or at least change their policies to achieve higher economic growth.

References

- Abdouli, M., & Sami H., (2017). The Impact of FDI Inflows and Environmental Quality on Economic Growth: An Empirical Study for the MENA Countries, Journal of Knowldge Econonomics, 8:254–278. DOI 10.1007/s13132-015-0323-y.
- Akinlo, A.E., (2008). Energy consumption and economic growth: evidence from 11 Sub-Sahara African countries. Energy Econ. 30 (5). 2391–2400.
- Al Iriani, M.A., 2006. Energy-GDP relationship revisited: an example from GCC countries using panel causality. Energy Policy 34, 3342–3350.
- Altaee, Hatem Hatef Abdulkadhim, Mohamed K., Al-Jafari & Masoud A., Khalid, (2016). Determinants of Economic Growth in the Kingdom of Saudi Arabia: An Application of Autoregressive Distributed Lag Model, Applied Economics and Finance, 3(1). 83-92.
- Altinay, G., & Karagol, E., (2005). Electricity consumption and economic growth: evidence from Turkey. Energy Economics, 27, 849–856.
- Apergis, N., & Payne, J.E., (2009). Energy consumption and economic growth in central America: evidence from a panel cointegration and error correction model. Energy Economics, 31 (2), 211–216.
- Arouri, M.H., Ben Youssef, A., M'henni, H., & Rault, C., (2012). Energy consumption, economic growth and CO2 emissions in Middle East and North African countries. Energy policy, 45, 342-349.
- Azomahou, T., Laisney, F. and P. Van P. N., (2006), Economic development and CO2 emissions: A nonparametric panel approach, Journal of Public Economics, 90, 1347-1363.
- Behera S., Ranjan, D., & Prasad D., (2017). The effect of urbanization, energy consumption, and foreign direct investment on the carbon dioxide emission in the SSEA (South and Southeast Asian) region, Renewable and Sustainable Energy Reviews, 70 (2017), 96–106.
- Borhan, H., Ahmed, E. M., & Hitam, M. (2013). CO₂, Quality of Life and Economic growth in ASEAN 8, Procedia-Social and Behavioral Sciences, 35, 389-397.
- Borhan, H., Ahmed, E. M., & Hitam, M. (2012). The impact of CO2 on economic growth in Asean 8. Procedia Social and Behavioral Sciences, 35, 389–397.
- Chandran, V., Sharma, S., & Madhavan, K. (2010). Electricity consumption-growth nexus: The case of Malaysia. Energy Policy, 38, 606-612.
- Christopher, O. O., & Douglason, G. O. (2011). Environmental quality and economic growth: searching for environmental Kuznets curves for air and water pollutants in Africa. Energy Policy, 39, 4178–4188.
- Ciarreta, A., & Zarraga, A. (2010). Economic growth-electricity consumption causality in 12 European countries: Adynamic panel data approach, Energy Policy 38, 3790–3796.
- Ciarreta, A., Zarraga, A., (2009). Electricity consumption and economic growth in Spain. Applied Economics Letters, 17(14), 1417-1421. <u>https://doi.org/10.1080/13504850903018689</u>.
- Fatai, K., Oxley, L., & Scrimgeour, F. G. (2004). Modelling the causal relationship between energy consumption and GDP in New Zealand, Australia, India, Indonesia, The Philippines and Thailand. Mathematics and Computers in Simulation, 64(3). 431-445.
- Ghali, K.H., & El-Sakka, M.I.T., (2004). Energy use and output growth in Canada: amultivariate cointegration analysis. Energy Econ. 26 (2). 225–238.

- Glasure, Y.U., (2002). Energy and national income in Korea: further evidence on the role of omitted variables. Energy Econ. 24 (4). 355–365.
- Govindaraju V.G.R., & Tang C. F., (2012). The dynamic links between CO2 emissions, economic growth and coal consumption in China and India, Applied Energy, 104 (2013) 310–318.
- Greene, W. H., (2007) Econometric Energy Policy analysis, Prentice Hall, 6th edition.
- Grossman, G.M., & Krueger, A.B. (1991). Environmental impacts of a North American free trade agreement. National Bureau of Economics Research Working Paper, No. 3194NBER, Cambridge.
- Gujarati, D.N. (2003). Basic Econometrics. McGraw Hill Book Co., New York.
- Halicioglu, F., (2009). An econometric study of CO₂ emissions, energy consumption, income and foreign trade in Turkey, Energy Policy, 37 (2009), 37, 1156-1164.
- Hamdan S.S. B., (2016). The Effect of Exports and Imports on Economic Growth in the Arab Countries: A Panel Data Approach, Journal of Economics Bibliography, 3(1). 100-107.
- Hamdi, H., Sbia, R., & Shahbaz, M. (2014). The nexus between electricity consumption and economic growth in Bahrain. Economic Modelling, 38, 227-237.
- Hvidt Martin, (2013, Economic diversification in GCC countries: Past record and future trends, working paper, <u>www.lse.ac.uk/LSEKP/.</u>
- Lean, H.H., Smyth, R., (2010). CO2 emissions, electricity consumption and output in ASEAN. Applied Energy, 87, 1858–1864.
- Lee, C.C., (2005). Energy consumption and GDP in developing countries: a cointegrated analysis. Energy Economics 27, 415–427.
- Lee, C.C., Chang, C.P., (2005). Structural breaks, energy consumption, and economic Growth revisited: evidence from Taiwan. Energy Economics, 27, 857–872.
- Lee, C.C., Chang, C.P., (2008). Energy consumption and economic growth in Asian economies: a more comprehensive analysis using panel data. Resource and Energy Economics 30, 50–65.
- Lee, C.C., Chang, C.P., Chen, P.F., (2008). Energy-income causality in OECD countries revisited: the key role of capital stock. Energy Economics, 30, 2359–2373.
- Li Hongze, Bingkang Li and Hao Lu, (2017). Carbon Dioxide Emissions, Economic Growth, and Selected Types of Fossil Energy Consumption in China: Empirical Evidence from 1965 to 2015, Sustainability, 9, 697: 2-14.
- Li Yang, Feng Nan, and Fang Nan, (2011). Relationship between Energy Consumption and Economic Growth: Empirical Study Based on Data on Hebei Province from 1980 to 2008, Systems Engineering Procedia 1 (2011) 117–123.
- Masih, A. M. M., and R. Masih. (1998). A multivariate cointegrated modeling approach in testing temporal causality between energy consumption, real income and prices with an application to two Asian LDCs. Applied Economics 30 (10): 1287-1298.
- Mohapatra Geetilaxmi and A K Giri . (2015). Energy consumption, economic growth and CO_2 emissions: Empirical evidence from India, The Empirical Econometrics and Quantitative Economics Letters, 4(1). 17 32.
- Mohiuddin, O., Samuel A. & Madina O., (2016). The relationship between carbon dioxide emissions, energy consumption, and GDP: A recent evidence from Pakistan, Cogent Engineering, 3: 1210491, 1-16.

- Mushtaq, M., Rabia N., & Iqra B., (2014). International Review of Research in Emerging Markets and the Global Economy, International Journal of Business and Emerging Markets, 1(2). 81-89.
- Narayan, P. K., & Smyth, R. (2005). Electricity consumption, employment and real income in Australia evidence from multivariate Granger causality tests. Energy Policy, 33(9). 1109-1116.
- Narayan, P., & Singh, B. (2007). The electricity consumption and GDP nexus for the Fiji Islands. Energy Economics, 29(6). 1141-1150.
- Oh, W., & Lee, K., (2004). Causal relationship between energy consumption and GDP revisited: the case of Korea1979–1999, Energy Economics 26, 51–59.
- Omri, A., (2013). CO₂ emissions, energy consumption and economic growth nexus in MENA countries: Evidence from simultaneous equations models, Energy Economics, 40, November, 657-664.
- Omri, A., Daly S., Rault, C. H., & Chaibi A. (2015). Financial development, environmental quality, trade and economic growth: what causes what in MENA countries. Energy Economics, 48, 242–252.
- Qader, R. M., (2009). Electricity Consumption and GHG Emissions in GCC Countries, Energies, 2, 1201-1213.
- Rashid, S. Muhammad S., & Ilhan O., (2017). urbanisation and electricity consumption nexus in UAE. Economic Research-Ekonomska Istraživanja, 30(1). 527-549, http://dx.doi.org/10.1080/1331677X.2017.1305792
- Rezitis, N. A., Shaikh M. A., (2015). The Relationship between Energy Consumption and Economic Growth in South and Southeast Asian Countries: A Panel Vector Autoregression Approach and Causality Analysis, International Journal of Energy Economics and Policy, 5(3). 704-715.
- Richmond, A. K., & Kaufmann, R. K. (2006). Is there a turning point in the relationship between income and energy use and/or carbon emissions? Ecological Economics, 56, 176–189.
- Salahuddin M., & Jeff G., (2014). Economic growth, energy consumption and CO₂ emissions in Gulf Cooperation Council countries, Energy 73 44-58.
- Shafik, N. (1994). Economic development and environmental quality: an economic analysis. Oxford Economic Papers, 46, 147–162.
- Shahbaz, M., (2013). Economic growth, energy consumption, financial development, international trade and CO₂ emissions in Indonesia, Renewable and Sustainable Energy Reviews, 25, 109– 121, <u>http://dx.doi.org/10.1016/j.rser. 2013.04.009</u>.
- Shahbaz, M., Salah, U., G., Ur R. I., & Imran, K., (2014). Industrialization, electricity consumption and CO2 emissions in Bangladesh. Renewable and Sustainable Energy Reviews, 31, 575-586.
- Shahbaz, M., Zeshan, M., & Afza, T. (2012). Is energy consumption effective to spur economic Growth in Pakistan? New evidence from bounds test to level relationships and Granger causality tests. Economic Modelling, 29, 2310–2319.
- Song, T., Zheng, T., & Tong, L. (2008). An empirical test of the environmental Kuznets curve in China: a panel cointegration approach. China Economic Review, 19, 381–392.
- Soytas, U. R. Sari & B. T. Ewing, (2007). "Energy consumption, income, and carbon emissions in the United States," Ecological Economics, 62, No. 3-4, pp. 482-489.
- Soytas, U., & Sari, R. (2009). Energy consumption, economic growth and carbon emissions: challenges faced by an EU candidate member. Ecological Economics, 68, 1667–1675.

- Soytas, U., & Sari, R.,(2003). Energy consumption and GDP: Causality relationship in G-7 countries and emerging markets. Energy Economics 25, 33–37.
- Stolyarova, E., (2013). Carbon Dioxide Emissions, economic growth and energy mix: empirical evidence from 93 countries, EcoMod .
- Wang, S., Qiuying L., Chuanglin F., & Chunshan Z., (2016). The relationship between economic growth, energy consumption, and CO₂ emissions: Empirical evidence from China, Science of the Total Environment, 542 (3). 360–371.
- Wang, S. S., Zhou, D. Q., Zhou, P., & Wang, Q. W. (2011). CO₂ emissions, energy consumption and economic growth in China: a panel data analysis. Energy Policy, 39, 4870–4875.
- Wooldridge, J.M., (2001). Econometric Analysis of Cross Section and Panel Data, MIT Press.
- Wooldridge, J. M., (2012). Introductory Econometrics a Modern Approach: 5th edition, Michigan: Cengage Learning.
- Yoo, S.H., (2005). Electricity consumption and economic growth: evidence from Korea. Energy Policy 33, 1627–1632.