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Abstract

This study is to fit and identify a vector autoregressive model system VAR(2)model system for
multiple time series,(two time series: the human development indices(HDI) for Iraq, and Iran from
(1990 to 2017) are studied here by this type of model which is important and fixable to reach the
objectives of this study that’s to determine the order of VAR model and recognize the
interdependencies among them, and also to evaluate the time length (how many lags time) of
dependency they might be continued because the researcher assume and expect as an assumption
that this interdependency may continue for a long time because of the similarity of the culture, same
religion, commercial relations, geographic location, and social relations between populations in
these two countries . Also this study tried to determining the number of lags time cutoff the
dependencies (disappearance lag time of dependency) between them, in addition to determining the
number of forward time order dependency by adding one positive standard division to the error
term for each time series variable above, by using (shock, innovation, or impulse response) to see
the impact of each on the other.

Keywords: Vector autoregressive model (VAR), Human development indices (HDI) Impulse
response function (IRF), Multiple time series (MTS), Full information maximum likelihood
estimates (FIMLE).
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1-Introduction:

VAR models are an extension or a generalization of a single autoregressive time series models,
VAR model system is a flexible one for multivariate time series data, and econometrics, where the
simultaneous equations models specified and identified, this criterion is questioned and advocated
as an alternative model firstly by (Sims, C. A. 1980) as VAR models, that criticizing the claims, and
performance of earlier modeling in macro-econometrics ,he recommended VAR models, which had
previously appeared in time series statistics and in system identification, also in statistical control
theory."”!

AR(P), allowing to more than one evolving time series variable, each has an own explanation
equation model, its evolving interested on lagged values for time series itself , and the lagged values
of the other model variables, and the residuals or error term, it doesn’t require as much information
about the strengthen influencing a variable, but only a sufficient knowledge required is a list of
variables that assumed to be affective inter-temporally to each other, so VAR model is a stochastic
model that can be used to detect and recognize the interdependencies among multiple time series, In
other sense if the causality information is available between time series variables involved, for
example(y, and yy¢)are two time series variables , assume variable( yj;) is causal for a variable(yy),
then(Granger 1969) defined that VAR models can also be used for analyzing the relation between
these involved variables. VAR models also are useful tools for forecasting, if the error term are
independent white noise (in VAR model the white noise for each model in the system are
uncorrelated, but they are correlated for among the different models in the system) JLPLI3]

The (IRF) is a shock to a VAR system to identify the responsiveness of the dependent variables
(endogenous variables), or the origin time series in the system by the changes that may occurs after
adding one positive standard division to the error term, which is named by (shock, innovation, or
impulse response), and watching to see what may happening for the interdependencies between TS
VariatE‘l‘?[smin long or short term of time lags and what may occurred on the relation between
them."™
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2- Methodology:

This section is intended to describe the general ideas of theoretical aspects for VAR models and the
algorithms of estimation method in multiple time series analysis, in addition to the IRF’s criterion
as a tool for detecting interdependencies and the impaction of time series one on each other.

2-1 VAR (p) Model Estimation:

Generally, the best statistical model required the normal distribution or randomness of residuals.
Assume that we have derived an estimator over assumption of multivariate normality; then we take
the model for the data and obtain and evaluate model estimates under the normality assumption. If
the multivariate normality assumption is correct, the residuals should not deviate significantly from
the assumption or &, .INp(0,¥), but if they are auto-correlated or, then the estimates may no
longer have optimal properties then the obtained parameter estimates over an incorrectly derived
estimator may be meaningless, and since we do not know their ‘true’ statistical estimation’s
properties then the model may be under the risk of losing generalization.[4]’[5]’[12]

2-2 Maximum Likelihood Estimation Method for Unrestricted VAR (P) model:

Before being able to test the assumptions, we need to estimate the model and the following section
derives the ML estimator under the null of correct model specification. This section discusses the
unrestricted VAR model and illustrates the Maximum likelihood method of estimation in general
VAR (P) model.

The general VAR system can be represented by the following form:

Y, =0'Z,+®D; + ¢, t=1,2,...... , I ,and & .INp(0,¥) - (1)

Where: ' = {pg 01,05, ...,0,}, Z ={1,Y';_1,Y';_5,..,Y 41} and the initial values ¥° =
{Y',,Y' 1, ...,Y :_xs1} are given, and D, is seasonal or dummy affecting matrix for the time
series variables. For simplification we ignore the effect of D, by assuming ®D;=0, we need to
derive the equations for estimating ® , and W which can be done by finding the expression for ©@
and W for which the first order derivatives of the likelihood function are equal to zero. We consider
first, the multivariate normal log likelihood function in the following:

InL(®,¥,Y) = —Tg In2m — T~ In[®| -2 X7, (Y, - 0'Z,) "$(Y, — 0'Z;) - )

The result of w =0, gives: Y.Z,=0'YT_, Z.Z{ so that the full

Information ML estimator for @ is ' = (X1_, Y, Z))(XF., Z,Z))7'=S,,S 71 ,,

4lnL(0,%,Y
Next we must calculate 2InL(6.¥.Y)

= 0, then the estimator of ¥ is given by

T, 1 o' o' ! 1 1

Y= T Zthl(Yt —0'Z)(Y,—0'Z)" = ;2;1;1 && 0 mmmmmmmmeee “4)
So by using the equations (3), and (4), we can find the maximum value of the (log) likelihood
function for the each maximum likelihood estimates (8, and P) :

P 1 ., 1T R ~ R
lanax(O, Y, Y) = _TE In2m — TE lnl‘l’l — E Z (Yt _ @/Zt) rq,—l(Yt _ @/Zt)
t=1
""""" &)
Now we have to show that(lanax = —T% In|®| + constant term), then we must consider first

that: (Yt - @,Zt), q\"_l(Yt_— - @,Zt) = Eél’l\l_lst = Zl,] gt,i q\"_lgt’]’
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Using the result of matrix notation trace AB = }.; j(A;; Bj;) and summing through (T), we get:
ZZ:I(YL“ - @'Zt)(p_l (Yt - @'Zt)’ = Nioq trace(P e}

=TYTI_  trace(W$ e /T)

=T trace(P~'®) =T trace (I,) =T.p
Then InL,,, = —T% ln|‘T’| — Tg — Tgln (2m) this indicates that from the equation (5), the
constant term is equal to the quantity {—T(g) — T(g)ln (2m)}, this means that the maximum of the

log likelihood function is proportional to the log determinant of the residual covariance matrix ().
The derivation of the maximum likelihood estimator for the co-integrated VAR model later. In
order to be able to test hypotheses on(®), we need the distribution of the estimates®. Let now we
have a case of VAR (p=2) model and we need to discuss the asymptotic distribution of ® under the
assumption of stationary of the process Y next, consider the estimation error of the VAR (2)
coefficients are given by:
@’-@’:(61—62)_(91—92), """""""" (6)
let the variance-covariance matrix between two time lag variables (X i, and Xy.,)

. e [211 2a2] _ var(Ye-1) cov(Yi—q, Yi—2)
Is given by: 2, [221 Zzz] [COU(Yt—Z; Yi-1) var(Y;-,)
Under the stationary assumption, the equation (6), has asymptotic normal distribution as:

—~ asymtotic
VT(6 - 9) NOYR®Y™ e (7)
such that & is a for kronecker product(If A is an m x n matrix and B is a p x g matrix, then the
Kronecker product A @ B is the mp x ng block matrix).

¥ Pii

Where, ¥ ® 2‘1=[ : :
O ey, wy,
1|2 X1z

=|< ; l , i=1, 2.
21 X2
The asymptotic normal distribution in (7) can be generalized to test any coefficient, now for testing
the significant of a such single coefficient, for instance the first element 6; 1, of 6; , We must
define two vectors @' =[1,0,0,...,0]and &' =[1,0,0, ..., 0] where (a) isp x 1, and & is 2p x
1, so that @ '®" & = 60,1, Using expression(7), we can find the test statistic for the null hypothesis
0111 = 0, which has a Normally (0,1) . This can be generalized to testing any coefficient in (@),
after appropriately choosing the vectors (a), and (8) by the following test.

VT a'@'s asymptotic
(alqjaslz—ls) N(O’]) ______________ (8)

l , note that the matrix (3}) partitioned in to:

For a general VAR (p) with (k) variables, with general matrix notation of an identified VAR (1) in
two variables (Y. Y,) can be written in matrix form as:

Vil b1 biz] [Yit-1 €1t
[YZ,t] B [az] " [b21 bzz] YZ,t—l] * [Ez.t] ©)
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In which only a single matrix appears because this VAR model has a maximum lag (p) equal to (1),
or, equivalently, as the following system of two equations.

Yige=a; +bi1Yie-1 + b1V 1 + €1
Yor=ay + bV g +bppYor 1 +e: 0 s (10)
Such that: Y;;, Y,, are two time series variables.

Each time series in the model has one equation. The current time (t) observation of each variable
depends on own lagged values as well as on the lagged values of each other variable in the VAR.
This model can be estimated, using MLE approach as discussed above,2HSHBLI0]

2-3 Impulse Response Function (IRF):

IRF is a reaction of any system in response to some extra change (independent variables), then it
describes the reaction of the system as a function of time or may be a function of some other
independent variables that parameterizes the dynamic behaviors of the system, then its usual to say
that the dynamic systems and their IRF’s are may be physical objects, or mathematical system of
equations describing such objects, since the IRF contains all frequencies, and defines the response
of a linear time invariant system for all frequencies, and causing boosting response after low or high
frequency. The impulse can be described and modeled, depending on whether the system modeled
in discrete or continuous time, and then it can be modeled as the kronecker delta for discrete time
system (time series). A system as linear time invariant is completely characterized by its impulse
response, that’s for any input, the output can be calculated in term of the input and impulse response
[output= f (input, and impulse response)in economics, and especially in macroeconomic modeling,
IRF’s are used to describe the economy reacts through time to exogenous impulses, which
economists usually call (shocks), and are often modeled in a VAR model . Impulse response
functions describe the reaction of endogenous macroeconomic variables such as output,
consumption, investment, and employment at the time of the shock and over subsequent points in
time. In linear regression, an exogenous variable is independent of the random error term in the
linear model. After a final VAR model was decided, and their parameter values have been
estimated, for finding such model holds all variables depend on each other. In order to get a better
results for the model’s dynamic behaviors, then one can use IRs which they gives us the reaction of
a response variable where a one-time shock or innovation was happened. (-1

2-4 Co-integration and Variables Integration Order:

When a collection of time series variables(x;, y; z...., etc) have been studied, they are said to have
the (co-integration) statistical property, firstly if all of the series variables must be integrated of
order(1), and next, if a linear combination for this collection is (0) order integrated, then the
collection is said to be co-integrated.

Let us we write the VAR system with the standard VAR’s of infinite error terms as:

JZ’t] Yt] by [‘Pn (P1zl [yt—i]
t Py Py €20

DOI: http://dx.doi.org/10.25098/3.1.4 51




1‘ \ The Scientific Journal of Cihan University — Sulaimanyia PP: 47-61
\ === Volume (3), Issue (1), Jun 2019

%%wbuq /;
SICHS ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)
Yt Vt
Zt] = Z_t] + 280 q)i S e (11)

Now the impact effect of a one unit positive change in a structural innovation in equation (11), we
can get the impact effect of &, on y; and z; by taking first derivative for equation (11) as follow:

dz;

ddg = @2(0) == @32(0) impact effect for (0) period ahead
Z,t Z,t
% = @12(1) , % = @5,(1) impact effect for (1) period ahead
z,t Z,t

Note that these impact factors are the same of a structural innovation for one period ago:

dyt dZt

deze—q

=@2(1) , @,2(1) , then IRF are the plots of the effect of (¢,,)

dezi—q

On current and all future of(y, and z), and it shows how series{y;}, and{z;} react to each other by
the effects of different shocks. So the IRF of (y) to a one unit change in the shock to (z) is given by

(@12(0)+ @15(Dt......+ @qp(0)) . O]

2-5 Variance Decomposition:

The Cholesky (decomposition variant) is the method of choice, for superior efficiency and
numerical stability. In econometrics and other applications of multivariate time series analysis,
variance decomposition is used to aid in the interpretation of a vector autoregressive (VAR) model
once it has been fitted. The (Cholesky-dof) indicates the amount of information each variable
contributes to the other variables in the autoregressive for each period. It determines how much of
the forecast error variance of each of the variables can be explained by exogenous impulse or shock
to the other variables. In practice the effects in equation (12) above cannot be calculated since the
structural VAR system is unidentified, then an additional restriction must imposed on the VAR
system to identify the IR’s , then one can use Cholesky dof adjustment procedure that assumes one
of the two time series don’t have a recent effect on the second one then the estimate value of the
second time series assumed to be zero, which makes the €, shocks doesn’t affect z;directly but

indirectly through the lag effect y,_; in VAR model system./I214!

3-Application:

Two time series used in this study are about HDI for each (IRAQ, and IRAN) republics as
mentioned above. The table below illustrates these two time series. (Eviews statistical package,
Version 9 was used during this application).
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3-1 Sample data description:
Table (1): HDI% yearly time series for (IRAQ, and IRAN) , 1990 - 2017
Years IRAQ.HDI % | IRAN.HDI % years IRAQ.HDI % | IRAN.HDI %
1990 0.572 0.577 2012 0.659 0.781
1991 0.527 0.594 2013 0.666 0.784
1992 0.541 0.608 2014 0.666 0.788
1993 0.561 0.620 2015 0.668 0.759
1994 0.561 0.629 2016 0.672 0.796
1995 0.553 0.640 2017 0.685 0.798
1996 0.573 0.647
1997 0.582 0.653
1998 0.596 0.659
1999 0.603 0.664
2000 0.607 0.670
2001 0.614 0.678
2002 0.616 0.683
2003 0.603 0.689
2004 0.628 0.691
2005 0.631 0.695
2006 0.636 0.731
2007 0.638 0.736
2008 0.643 0.741
2009 0.646 0.747
2010 0.649 0.755
2011 0.656 0.766
.85
.80
.75 -
.70 -
.65
.60
.55
'50 T T T T T T T T T T T T T T T T T T T T T
90 92 94 96 98 (e]6] 02 o4 o6 08 10 12 14 16
| — IRAN (HDI )% IRAQ (HDI) % |
Figure (1): Human Development Indices (%) for Iraq and Iran.
DOI: http://dx.doi.org/10.25098/3.1.4 53




PP: 47-61

The Scientific Journal of Cihan University — Sulaimanyia
Volume (3), Issue (1), Jun 2019
ISSN 2520-7377 (Online), ISSN 2520-5102 (Print)

i, SICUIS /4
Nty

3-2 Unit Root Test:
Table (2): Unit Root Test (Detail).

Endogenous variables: IRAQ.HDI and IRAN.HDI.

Modulus Root
0.972970 0.972970
0.875349 0.816438 - 0.315698 i
0.875349 0.816438 + 0.315698 i
0.863758 0.453747 - 0.734978 i
0.863758 0.453747 + 0.734978 i
0.759949 -0.658455 - 0.379421 1
0.759949 -0.658455 + 0.379421 i
0.751615 0.035549 - 0.7507740 i
0.751615 0.035549 + 0.750774 i

The unit root test used for achieving stationary for the two origin Endogenous series, since the all
values of modulus are inside the unit circle, indicates the stationary of these time series in the
origin, noting that VAR models can’t be achieved if stationary is not exist. It is necessary to achieve
stationary of endogenous time series before estimating VAR models system so in this study, stationary for
both time series were achieved was achieved without differencing, by testing it with unit root test (see
table(2)because all the modulus is less than one, means all the roots of the parameters system are inside the
unit circle. In order to estimate a VAR (P) model, its required for the series under consideration to be stable,
then stability testing must be applied for each two time series, see table(2) for unit root test, since all values
of the modulus are inside the unit circle(modulus=\/ (a’+ b?) for the complex number z = (a+bi) ), then the
stationary of these two time series is achieved.

3-3 Estimating VAR (2) model:

Table (3): Estimation values of parameters for VAR (2): The table(3) above shows the estimation for
the parameters of the VAR (2) model for two lags time for each, with intercept value( C), note that
the value of intercept is non-zero because the two series are originally stationary in mean (without
differencing).

Table (4): Estimated VAR(2) model goodness of Fit details:

IRAQ HDI IRAN HDI Variables time lags

Estimate 0.080800 0.598324 IRAQ.HDI
S.E (0.14648) (0.16466)

Estimate 0.137317 0.044692 IRAQ.HDI,,
S.E (0.11947) (0.13430)

Estimate 0.858576 0.104246 IRAN.HDI
S.E (0.21225) (0.23858)

Estimate -0.025788 0.105177 IRAN.HDI, ,
S.E (0.21015) (0.23622)

Estimate -0.008760 0.079879 C: intercept
S.E (0.02861) (0.03216)

54
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The table shows some statistics and tests for the estimated VAR (2) model, R%=0.98, and 0.97 for
Iraq, and Iran respectively which indicates a best performance and a strong relationship or
contribution for each time series with the first and second lag variable for each other. Also the F
statistic gave a good indicator for the estimated model performance.

IRAQ.HDI model IRAN.HDI model

0.989635 0.970890 R-squared

0.987661 0.965346 Adj. R squared

0.000962 0.001216 Sum sq. residuals

0.006770 0.007609 S.E. equation

501.2825 175.1031 F-statistic

95.76236 92.72196 Log likelihood
VAR (2) Model Formula:

IRAQ.HDI  =C; +¢1; *IRAQ.HDI 1.1 +¢1,*IRAQ.HDI > +¢;, *IRAN.HDI (.| +¢p14*IRAN.HDI .,
+ & tl

IRAN.HDI ; = C; +¢p,1 *IRAQ.HDI (| +¢0,,*IRAQ.HDI (., +¢,3*IRAN.HDI .| +¢,,*IRAN.HDI .
2+ €

In a matrix notation the Estimated VAR (2) system can be expressed as follow:

IRAQ HDI,_,

[IRAQ HDIt] _ [Q] 4 [¢11 $12 P13 14| |IRAQ HDI;,
IRAN HDI, G, $21 P22 P2z Paal [IRAN HDI,_4
IRAN HDI,_,

Estimated VAR (2) Model system :

IRAQ HDI (1) = 0.0798786617718+ 0.598324354649*IRAQ.HDI 1) +
0.0446915982332*IRAQ.HDI (2 + 0.104245762558*IRAN.HDI (1) +
0.105177160862*IRAN.HDI (.2,

IRAN.HDI (1) = - 0.00875964239950 + 0.807995406618*IRAQ.HDI (1) +
0.137316815721*IRAQ.HDI ) + 0.858576277555*IRAN.HDI (1) -
0.025787875733*IRAN.HDI

The system equation in (17) can be expressed with numerical matrix form as follow:

IRAQ HDI;_,

[IRAQHDIt]z[ 0.07987]+[ 0.5983 0.0446 0.1042 0.1052 ]|IRAQ HDI,_,
IRAN HDI, — 0.00875 0,8079 0.1973 0.8585 —0.0257 ||IRAN HDI,_,
IRAN HDI,_,
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3-4 VAR (2) Model System Evaluation and Testing:

Prediction Evaluation:

MAPE MAE RMSE Inc. obs. Variable
12.241 0.0878 0.0906 28 IRAQ.HDI
14.006 0.0879 0.0916 28 IRAN.HDI

Table (5): Predicted and Actual time series with VAR (2) model: shows applying estimated VAR(2)

model in equation system (16) on HDI for Iraq, and Iran simultaneously, and model residuals.

IRAQ.H | IRAQ.HDI |IRAN.H| IRAN.HDI
Years DI Prediction DI Prediction Residuals
1990 0.572 -- 0.577 -- -0.058813
1991 0.527 -- 0.594 -- 0.023949
1992 0.541 0.543368 0.608 0.607482 0.017490
1993 0.561 0.554344 0.620 0.613762 0.000263
1994 0.561 0.563716 0.629 0.621940 0.009263
1995 0.553 0.571326 0.640 0.631065 0.031953
1996 0.573 0.578110 0.647 0.640589 0.009726
1997 0.582 0.584462 0.653 0.650125 0.002574
1998 0.596 0.590561 0.659 0.659511 -0.011885
1999 0.603 0.596476 0.664 0.668689 -0.017115
2000 0.607 0.602231 0.670 0.677643 -0.016960
2001 0.614 0.607838 0.678 0.686371 -0.019190
2002 0.616 0.613301 0.683 0.694876 -0.017113
2003 0.603 0.618626 0.689 0.703166 0.007885
2004 0.628 0.623814 0.691 0.711244 -0.026649
2005 0.631 0.628870 0.695 0.719116 -0.027033
2006 0.636 0.633798 0.731 0.726787 0.001660
2007 0.638 0.638599 0.736 0.734263 0.003737
2008 0.643 0.643279 0.741 0.741549 0.001430
2009 0.646 0.647839 0.747 0.748648 0.003046
2010 0.649 0.652283 0.755 0.755567 0.006662
2011 0.656 0.656614 0.766 0.762310 0.007433
2012 0.659 0.660834 0.781 0.768881 0.018049
2013 0.666 0.664947 0.784 0.775284 0.010819
2014 0.666 0.668955 0.788 0.781524 0.014819
2015 0.668 0.672861 0.789 0.787605 0.012896
2016 0.672 0.676667 0.796 0.793531 0.014051
2017 0.685 0.680377 0.798 0.799306 -0.002947

Table (6): Autocorrelation coefficients for residuals in table (5) and their probability limits after

using estimated VAR (2) model in system equations (16): it’s clear that all the values of
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autocorrelation coefficients for residuals in table(5) are inside the %95 confidence interval indicates

the randomness for residuals so the estimated VAR(2) model has a good performance.

Upper 95.0% | Lower 95.0% [
Prob. Limit Prob. Limit Stnd. Error Autocorrelation Lag
0.370399 -0.370399 0.188982 0.208749 1
0.386203 -0.386203 0.197045 0.0782812 2
0.388373 -0.388373 0.198153 0.214353 3
0.404279 -0.404279 0.206268 0.0993849 4
0.407617 -0.407617 0.207971 -0.185819 5
0.419078 -0.419078 0.213819 -0.118394 6
0.423642 -0.423642 0.216147 -0.19019 7
0.435198 -0.435198 0.222044 -0.120817 8
0.439776 -0.439776 0.224379 -0.16981 9
1F -
os |- .
§ b 3
I e I I I
5 02 ~
s .
iy \ \ L
o] 4 6 8 10
lag

Figure(2):Estimated Autocorrelation function for residuals after using VAR (2) model, all

autocorrelation coefficients falling on %95 c.i indicates a randomness of residuals for estimated

model.

Box-Pierce Test based on first 9 autocorrelations, large sample test statistic Q= 6.54302, with P-
value = 0.684578 .The Box-Pierce test here is based on the sum of squares of the first 9
autocorrelation coefficients. Since the P-value for this test is greater than or equal to 0.05, we
cannot reject the hypothesis that the series is random at the 95.0% or higher confidence level. Then
the model system in equations (17) is a more efficient and capable to represent the two time series
under consideration, and then the impulse response function acts well to detect the effects or
responses for each time series on the other, see figure(3) below which shows the actual and

predicted values for time series in the system.
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Figure (3): Actual and predicted time series with estimated VAR (2) models system

3-5 Impulse Response Function Analysis:

The figure (4) from below is named by Cholesky dof innovation, which display and explain the
interdependencies among two time series as a matrix of graph, by shocking the error term of VAR
(2) model system with one standard division, and studding, if the interdependency remain among
them for long run time or short run, if it is so at what time lag this relation closing to disappear, here
the researcher select (10)time lag to analyze the impulse response for each time series. See figure
below.

Response to Cholesky One S.D. Innovations +2 S.E.

Response ofIRAQ__HDI to IRAQ___HDI Response ofIRAQ__HDI toIRAN___ HDI
1
.008 | .008 | B
.004 | .004
.000 - \\\\ 7777777777777777777 .000 -
-.004 : -.004
1 2 3 4 5 6 7 8 9 10

Response ofIRAN__ HDI to IRAQ__HDI
.008 - C .008 -
.004 - /// 004
.000 - //\ o000l T -
-.004 . -.004 T

Figure (4): Cholesky dof one standard division impulse shows how the impulse or sock reduce or
increase the interdependency for two time series and impacting one on each other until the stability

was achieved.
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3-6 Variance Decomposition VAR (2):
Cholesky decomposition details:

Table (7): Variance Decomposition IRAQ.HDI

IRAN.HDI IRAQ.HDI S.E. Period
0.000000 100.0000 0.007609 1
0.629066 99.37093 0.008897 2
3.830968 96.16903 0.009594 3
8.136389 91.86361 0.010119 4
12.35805 87.64195 0.010582 5
16.04598 83.95402 0.011003 6
19.16109 80.83891 0.011389 7
21.78354 78.21646 0.011744 8
24.00689 75.99311 0.012071 9
25.91015 74.08985 0.012373 10
Table (8): Variance Decomposition IRAN.HDI
IRAN.HDI IRAQ.HDI S.E. Period
99.99690 0.003101 0.006770 1
99.47482 0.525178 0.008946 2
96.01229 3.987711 0.010375 3
91.83858 8.161421 0.011506 4
88.16101 11.83899 0.012477 5
85.24605 14.75395 0.013332 6
82.98273 17.01727 0.014096 7
81.20911 18.79089 0.014785 8
79.79340 20.20660 0.015410 9
78.64143 21.35857 0.015982 10

The Cholesky decomposition in the two tables (7,8) is an indicator of an amount of information for
each variable contributes to the other variables in the autoregressive for each period. It also
determines how much forecast error variance of each time series can be explained by exogenous
impulse or shock to the other time series in the system.

4- Conclusions:

From figure (1) one can see clearly that the fluctuations for these two series are similar, which
indicates initially that they have the same behaviors and also the unit root test from table (2)
indicated that the two series are originally (without taking differencing) stationary.

In order to make sure that the estimated VAR(2) model system(VAR(P) can handle short time
series)is an appropriate one and has a good performance, then some concerning tests applied as ,
sum square error for the system is ( 0.000962, and 0.001216) for Iraq and Iran HDI respectively and
R® =(0.989, and 0.971) for them.( see more details from table(4). And figure (3) After fitting
VAR(2) models system for Iraq, and Iran HDI and using impulse response function, it is clear that
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there are mutual influences on each other, the reason may be returned to the fact that the two
population follows the Islamic religion. The two cultures are close to each other because of the
mutual tirades throughout history, this is in addition to geographical contact and social interaction
through marriage and some social closures, then one can say that this interdependency may
continue impaction for a long run time as it was proposed by the researcher.

From the results and during applying VAR (2) model on the data, it showed that the model system
is more flexible for modeling multiple time series and it is capable to make predictions together (see
table 5, and figure 3).and also testing of VAR (2) residual’s randomness was made through testing
the autocorrelation function by using Box-Pierce test, see table (6), and figure (2).

Concerning to the contribution of each Iraq and Iran HDI in the estimated VAR model, from the
tables (7,8) it is clear that the Cholesky decomposition indicated that the two models approximately
have the same contribution on the estimated VAR(2) in equations (17), then one can conclude that
these two models in the VAR(2) system have an approximate power of influence and impacts on
each other and the exogenous impulse or shock for each time series explained clearly and more
precise the forecast error variance,

also one can separate each response from figure (4) and conclude that first graph (A), indicates that
the response of Irag human development indices after innovation or shock, is reducing up to five lag
time and it attains to stability for higher time lag. The second graph (B), explain the response of Iraq
human development and impacting Iran human development on it with an increasing manner
starting from zero level at first lag, this effect makes the interdependency and interaction effects
going to take stability after lag time(3). The third graph (C), explain the stability of the time lag
effects on Iran human development for a long run time. The fourth graph (D), explain the negative
impacts for Iraq on Iran human development, the HDI of Iran reduced gradually up to the lag
time(6), and then attains the interdependency among them to be stable.
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