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Abstract

Monitoring of the production process is an important subject for developing the quality of the
product and reducing the costs, (ARIMA) residual chart is a special control chart used to specify
and detect the quality behavior in time-correlated process data, to determine if they are out of
control or in control. Furthermore, this type of chart is useful for adjusting and specifying the
quality limits during the process. Water quality is considered the main factor of controlling human
health in disease therefore, it is necessary to keep the quality of drinking water to be in control. The
main objective of this study is to monitor the two important chemical parameters of drinking water
which are Power of Hydrogen (PH) and Magnesium (MG), it also aims to determining the control
limits for both (PH &MG) from the optimal tolerance limits to control the water production for
reach better quality products in the future, by taking the data for each of the parameters (PH& MGQG)
from January to September (2018) from the (KANISARD) factory for producing drinking water at
Sulaimani city in Kurdistan region in Iraq. By using the autoregressive integrated moving average
(ARIMA) control chart. The result of the study showed that both (PH &MG) processes are in
statistical control by using ARIMA control chart, and also the optimal tolerance limits were
determined for both of the parameters.

Keyword: quality control, statistical process control, control chart, ARIMA control chart, tolerance
limit, PH, MG.
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1.1 Introduction:

Quality control (QC) is a significant function in the factory that deals with inspecting the
product before transporting the product to customers. Hence, quality is one of the most widely
important customers deciding factor for choosing among the competing services and products
(Ashour, 2014). Statistical quality control (SQC) is a method that uses statistical techniques to
monitor and control the quality of the product by using the control charts as test tools that
frequently used to monitor the manufacturing process (Salih, 2011). Statistical process control
(SPC) is defined as a powerful collection of solving tools problem which is very helpful for
improving capability and getting the stability of the process by reducing the variability. Statistical
process control (SPC) is one of the most important technological improvements in twenty century
because it is based on sound underlying principles; it is easy and can be applied to any processes
(Montgomery, 2009). Control charts are the main and most important tools in statistical process control
(SPC), to detect the assignable causes only, which should be removed by engineering actions or operator.
Control charts include three horizontal lines and these are, Central Line, Upper Control Limit, and Lower
Control Limit. Control charts can be divided into two types of control charts and these are variable control
chart and attribute control chart (Magaji et al, 2015). The control charts process contains taking samples
from a process and plotting the control statistic on time order, which is calculated from the sample, the chart
is said to give a signal and the process is considered to be out of control if the statistic plots fall outside the
predetermined control limits and then it should make an effort for removing the cause of changing of the
process. Furthermore, a process is considered to be in a state of statistical control if it has only common
cause variation. Thus, a cause of a signal of the control charts is either common cause or special cause,
where a common cause signal is called a false alarm. When there are changes in the process because of a
special cause, thus the best control chart gives a signal rapidly and have a low false alarm rate where just
inherent variation is present (Xiao, P., 2013). Furthermore, any production process is in statistical control if
three or less than three points out of (1000) points fall outside the control limits, and also the process is out

of control if more than three points of (1000) point approximately falls outside the control limits (Hama
Rasoul et al, 2019).

1.2 Literature review:
This section gives the background about using ARIMA control chart in different areas and
also other control charts that used in the quality of water:
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Ahmad, (2006) compared ARIMA residual chart with traditional R-chart for monitoring the
cigarettes production, the result of the study showed that ARIMA chart is better than the R-chart in
detecting shifts and removing autocorrelation in the process. George et al. (2009) applied the
Hotelling T-square control chart for the fault detection of drinking water treatment. The result of the
study showed that the Hotelling T-square control chart can be applied effectively for the fault
detection of drinking water treatment.

Kovarik and Klimek (2012) studied the ARIMA residual chart in the financial data, and
illustrate how time series control charts are sensitive in detecting small shifts. Ashour (2014)
compares between univariate control charts (Shewhart, EWMA, CUSUM) and multivariate control
charts (Hotelling, MEWMA, MCUSUM) to monitor the quality of three parameters (chloride,
nitrate, total dissolved salts) of drinking water in KhanYounis governorate in Gaza. The result of
the study showed that the multivariate cumulative sum (MCUSUM) is the best control chart to
detect small shifts to monitor the drinking water quality in KhanYounis governorate in Gaza.

Tasdemir and Kowalczuk (2014) proposed the methodology for monitoring a plant scale
copper flotation process based on statistical quality control charts. It was concluded that the
ARIMA residual chart is more suitable and capable of monitoring the process than the standard
control charts when the data have autocorrelation problem. Bhasin et al. (2016) used Shewhart (X-
bar) control chart to evaluating the quality of water of a tropical river in India, analysis of different
parameters such as dissolved oxygen, turbidity, total alkalinity, total hardness, chloride, and
calcium was performed. The result of the study showed that the X-bar control chart gives a clear
illustrative of the pollution condition of the river, and the sample means values in control chart,
demonstrating the poor quality of the water.

Tasdemir, (2017) investigated determining control limits for ash content of clean coarse coal
that produced by heavy medium drum at the coal preparation plant. The result of the study showed
when considering non-normality and auto-correlation for ARIMA residual chart, the number of the
points that exceed the control limit is less than those obtained by control charts using original data.
Salleh et al. (2018) compared the performance of the Box-Jenkins method by using ARIMA
residual chart with geometric Brownian motion method for monitoring the autocorrelation process
by using the data from the furnace temperature. The result of the study revealed that both methods
are performed similarly and gave the same result for monitoring process control and model
accuracy, but the result also revealed that geometric Brownian motion method is easier in
comparing with Box-Jenkins approach.

2-Theoretical part:

2.1 Autoregressive integrated moving average (ARIMA) control chart:

Traditional Shewhart control chart fails if the data has a very low degree of autocorrelation,
and in control, diagram failure shows a large number of points outside the control limits because in
traditional Shewhart statistical process control (SPC) it is assumed that the measured data are not
auto-correlated. In the continuous processes case, this phenomenon is not unique. In the discrete
processes case, the autocorrelation of the data becomes an increasingly frequent phenomenon. The
time series stochastic modeling and using autoregressive integrated moving average (ARIMA)
model is one of the methods to overcome the autocorrelation problem of the data. Based on the
method of Box-Jenkins, linear stochastic auto-regressive models (AR), moving average (MA)
model, (ARMA) models, and autoregressive integrated moving average (ARIMA) models, is a
realization of the time series of a stochastic process, and they have a characteristic form of the
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autocorrelation function (ACF) and partial autocorrelation function (PACF). Both of the (ACF) and
(PACEF) are the vital tools for giving information about the stochastic processes, and they are used
for describing the models of the time series. In practice, very often there is a non-stationary process,
because of changing the mean value or changing variance overtime non-stationary can be present
(Kovarik et al, 2015; Kovarik & Klimek, 2012; Rashid, 2016).

The original integrated process is an autoregressive integrated moving average process
(ARIMA) of order (p, d, q), and (p) are the number of the autoregressive term, (d) is the number of
the differences and (q) is the number of the moving average term. Based on finding an appropriate
time series model also using the control chart for residuals ARIMA control chart is work. The
ARIMA (p, d, q) model has the general form:

®p(B).Ax; = 0q(B) & (D
Where,
®p(B) = (1 — ®,B — ®,B* ...— ®,B?) is autoregressive polynomials in (B) of p-th order

6q(B) = (1 — 6,B — 6,B* ...— §,B7) Is moving average polynomials in (B) of g-th order
(B): backshift operator where B. x; = x;_4

(A9): (1 — B)“Is the suitable integer number of differencing in order to get a stationary time series
and (t) is time.

b, P, @, are the autoregressive parameter models
61,0,, ...0,: are the moving average parameter models

£¢: White noise (unpredictable and its values are uncorrelated, also it is distributed normally with
zero mean and variance constant)

In practical application ARIMA model is the most widely used model, suppose the model is:
Xt = g + th—l + gt (2)

Where ¢ a ¢ (—1 < @ < 1) are unknown constants, and ¢&; is uncorrelated variable and distributed
normal with zero mean and constant stander deviation, this equation is called first-order
autoregressive model AR(1). If equation (2) expanded in the form

Xe =&+ Dyxpq + Poxyp + & 3)

The second order autoregressive model AR (2) is obtained. In general, the variable(x;) is dependent
in the previous value Xx;_1,X;_,...etc , where the AR (p) has the form[X, =& + @ x4 +
Dyxp_p + -+ Ppx¢_p, + £¢]. By using the random component (&) if the data dependence is
modeled, the MA (q) model is obtained. The moving average model of first-order MA (1) has a
form:

Xe=p+e —0eq 4)
And MA (2) has the form:
Xe=p+e— 01809 — 060 ()

In general moving average of order (q) MA (q) have the form:

Xt = IJ. + gt - Qlé’t_l - 92€t_2 e T Hqgt—q (6)
The correlation between( X,and X,_;) have the formpl = —0/(1 + 62), this corresponds to the
(ACF) shape. Frequently it is appropriate for modeling a mix of both autoregressive and moving
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averages model in modeling practical problems ARMA (p, q). ARMA of first-order model ARMA
(1, 1) have the form

Xe =8+ Pxpq + & — ey (7)

The ARMA model supposes a stationary process that is meaning that the quality character reference
value is around a constant mean. In practice, there are processes such as (chemical industry) where
the monitored variable value is running away, in these situations it is appropriate for modeling the
processes by using the suitable model with backward difference operator A , like ARIMA model
(0,1,1) with the form

Xe =X 1 +te— 064 (8

Shewhart model is different from ARIMA models (X; = u + ¢t for t = 1,2, ....) though, if $=0 in
equation X; = & + @x,_1 + & or 8 = 0 in the equationX; = u + & — 0&;_4, the Shewhart model
process is obtained. Selecting the suitable SPC control chart is another important step in using
ARIMA models when residual testing determines that they are coming from the normal
distributions and they are not auto-correlated (Kovatik et al, 2015; Kovarik & Klimek, 2012;
Rashid, 2016). Furthermore, the original Box-Jenkins modeling procedure refers to the application
of three steps process of model selection (identification, parameter estimation, and model checking)
(Muhammad, 2011; Muhammad, 2018). First step is Identification: in this step data is plotted for
the time series for checking if the data is stationary or not, if the data does not have any pattern such
as seasonality or trend then the data is stationary, but if the data is not stationary then the
transformation and difference are needed for making data stationary, and transformation of the data
such as (logarithm, square root, etc) are helpful for stabilizing the variance, also (difference
method) is helpful for stabilizing the mean, Box-Jenkins uses different graphs in addition, to the
more application function defined as (ACF) and (PACF), in this step also the degree of ARIMA
model (p, d, q) is determined for the data, by selecting this order that gives the minimum AKAIKE
(MAIC) (Muhammad, 2011; Muhammad, 2018).

In addition, stationary can be determined by using the time series plot for the observation
and also we can check the stationary for the time series by using the autocorrelation function, and
this by taking the correlation coefficient value, and if the series is stationary then the value of the
correlation coefficient approaching zero after lag two and three, but if the series is not stationary the
value of the correlation coefficient approaching zero after a large number of lags may reach seven
or eight and may not approach zero (Muhammad, 2011).AKAIKE information criterion (AIC): In
(1973-1974) AKAIKE suggested AKAIKE information criterion (AIC), and this is a criterion that
used to identify and select a suitable statistical model order, and popularly this criterion is used with
ARIMA models to finding the suitable order of the model,

AIC =nlno?a + 2m 9
Where,
n: is the number of observations
o’a: White noise variance
m: is the number of the estimated parameters (Muhammad, 2011; Muhammad, 2018).

Table (1) gives the general rule to identify the models by using autocorrelation (ACF) and partial
autocorrelation (PACF) plots to determine a proper model for the data (Muhammad, 2011;
Muhammad, 2018):
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Table (1) Model Identification

Model ACF PACF

AR(p) Tail off Cut off after (p)
MA(q) Cut off after (q) Tail off
ARMA (p,q) Tail off Tail off

The second step is Estimation process: estimation means finding the value of the model
coefficients which provide the best fit to the data (Muhammad, 2011; Muhammad, 2018). The final
step is Diagnostic model checking: this step is based on studying the autocorrelation plots for the
estimated residuals(g;). To see how much the suggested model corresponds to the behavior of the
time series (Muhammad, 2011; Muhammad, 2018).

First: Residual Autocorrelation test:

In testing the residual autocorrelation, if the autocorrelation coefficients of the residuals fall
within the confidence limit, then that is mean that the residuals not systematic which r for residuals
(a) is random and the identified model is an appropriate model and the confidence limits are:

1 1
~1.96 = < e(ar) < 1.96 =

Where (n) is the number of observation, and (k) is the lag period (Muhammad, 2011;
Hamarasoul et al, 2019).
Second: The goodness of fit test:

Box-pierce: In 1970 box and pierce suggested the statistic(Q) for the goodness of fit test for
suggested ARMA model such that:

(@ =nXir%(a’) ~ x*(h—m) (10)
Hy:pr(a) =0 V/s Hy:pi(a) #0 Where,
(Q) Statistic: have the chi-square x? with (h — m) degree of freedom
(n): Number of observation
(1) sample autocorrelation function at lag (k) of an appropriate time series(a ;)
(h): is the largest lag used
(m): Number of estimated parameters of the identified model

And (Q) statistics compares with the x’chi — square table with(h —m) degree of
freedom with 95% confidence level if (Q) < x? we accept H, and the selected model is an
appropriate model, but if (Q) > x? we reject Hy and we use another model because the model is not
a suitable model, where both models are based on computing autocorrelation function for the
residuals (Muhammad, 2011; Muhammad, 2018). However, it is probably to confirm whether the
process is in the steady state statistically or not. Since the observation number is equal to one,
control charts have precedence for moving range and individual values. The mean value Location
CL also the upper control limit (UCL) and the lower control limit(LCL) of the ARIMA (p, d, q)
control chart for individual values can be calculated from the following equations:

UCL =X+ —— Ry (11)
~ 1128

CL=X=0 (12)
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LCL=X— —— Ry (13)
Where, (X) Is the average of residual value, and  (R) is the average of moving range (Kovaiik et

al, 2015; Kovarik & Klimek, 2012; Rashid, 2016).
2.2 Tolerance limits:

Capability of ARIMA residual chart identified by the tolerance limits, to be adjusted to
make the beyond points in the charts UCL and LCL, by proposing a new control limits and
calculating several tolerance limits with respect to different specification values until to reach a new
control limits, that makes all observations in residual charts in control. Where to compute optimal
tolerance limit, specification value can be determined by taking some arbitrary constant until
calculating optimal tolerance limits and selecting the nominal value close to the process mean. The
tolerance limit efficiency can be tested by a measure called capability index (CP) to comparison
among several specification limits and choosing a better one to be a new residual control chart for
ARIMA. And capability index (CP) can be calculated as the ratio of the distance between the upper
and lower specification limit (UCL-LCL) divided by (6) times the standard deviation (Ahmad,
2006).

3- Application part:
3.1 Description of the data:

The data uses in this study are taken from Kanisard factory in Sulaimani city, for producing
drinking water and consists of two characteristics for the chemical water component, and these are
the Power of Hydrogen (PH), Magnesium (MG), which are the most important chemical
components of drinking water for (95) observations for each (PH&MG) from January to September
(2018) that shows in table (2), by using the STATGRAPHICS program.

Table (2) shows the data for each (PH& MQG)

n. of observation | Component of water

1 PH MG
2 7 7.5
3 7.1 5

4 7.3 4.7
5 7.1 8

6 7.1 8

7 7.1 54
8 7.2 8

9 7.1 0
10 7.2 6.5
11 7.2 6
91 7 3
92 6.9 5
93 7 5
94 6.8 4.6
95 7.1 7
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3.2 Analysis of ARIMA control chart and tolerance chart for the chemical parameters of
water (PH & MG):

3.2.1 Analysis of ARIMA residual chart and tolerance chart For (PH) process:

To determine an appropriate ARIMA model for controlling the residuals, recognizing the
data behavior is an important step, for this purpose the plot of the time series is used to assess the
pattern and the behaviors of data. It can be seen from the figure (1) that the (PH) process under
having no trend is stationary.

6 Time Series Plot for PH
7. [ T T T T T T ]

PH

6.8 — 1 . . . 1 . . . 1 . . . 1 . . . 1 . . i 1L
0 20 40 60 80 100

Figure (1) time series plot for (PH)

The time series plot is not enough to decide the stationary of the series, therefore for
checking the stationary the autocorrelation function (ACF) and partial autocorrelation function
(PACF) are plotted as shown in table (3) and (4) and figure (2) and (3), it can be seen that the value
of the correlation coefficient for the series falls within the following confidence limit after lag two:

_1'96\/% <n(ay) < 1.96\/1ﬁ = (—0.20109,0.20109)

Where (n) is the number of observation, and (k) is the lag period

Estimated Autocorrelations for PH

0.6 - ]
* N _
c - .
2 - _
e DD:D:D:DDEE:.:_I:IDD_E:DE ]
o - ]
802 -
=1 N _
b n _

-0.6_— ]

'1 __I s s s s 1 s s s s 1 s s s s 1 s s s s 1 s |__

0 5 10 15 20 25

lag
Figure (2) estimated ACF for PH
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Table (3) shows autocorrelation coefficient for the origin data for the (PH)

Lower Upper 95.0%

95.0%
Lag |Autocorrelat |Stnd. Error |Prob. Prob. Limit
ion Limit
1 0.27547 0.102598 |-0.201088]0.201088
2 10.252329 0.110108 |-0.215809]0.215809
3 10.170907 0.116036 |-0.227426]0.227426
4 10.135284 0.118656 |-0.232562]0.232562
5 10.0454234 10.120269 [-0.2357220.235722
6 (0.147722 0.120449 ]-0.236076]0.236076
7 10.0328966 |0.122341 |-0.239785(0.239785
8 10.143458 0.122434  ]1-0.239967]0.239967

9 10.0703873 |0.124191 |-0.24341 [0.24341

10 ]0.155984 0.12461 -0.24423210.244232
11 0.183036 0.126649  -0.248228]0.248228
12 10.076474 0.129403  ]-0.253627]0.253627
13 10.0993948 [0.129878  |-0.254557]0.254557
14 10.0388944 ]0.130677 ]-0.256122]0.256122
15 10.0241922 [0.130798 |-0.256361]0.256361
16 |-0.00712395 [0.130845 |-0.25645310.256453
17 10.132798 0.13085 -0.256461(0.256461
18 10.105701 0.132261 |-0.259227]0.259227
19 0.19121 0.133147 ]-0.2609640.260964
20 10.00957695 [0.136007 |-0.266569]0.266569
21 0.0783839 [0.136014 |-0.266582|0.266582
22 1-0.0280026 [0.136488 |-0.267513]0.267513
23 10.124401 0.136549 |-0.267631]0.267631
24 1-0.0989859 [0.137737 |-0.269959]0.269959

Estimated Partial Autocorrelations for PH

1_| T T T T T T T T T T T T T T ]

2 0.6 — -
% - -
Rdmis :
o - -
2 02 -
= C 4
S 06 -
-1 __I | | | | |__

0 5 10 15 20 25

lag

Figure (3) estimated PACF for PH
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Table (4) shows the partial autocorrelation coefficient for the origin data for the (PH)

Partial Lower Upper
95.0% 95.0%
Lag |Autocorrelati |Stnd. Prob. Limit |Prob. Limit
on Error
1 10.27547 0.102598 [-0.201088 |0.201088
2 10.190934 0.102598 [-0.201088 |0.201088
3 ]0.0697119 0.102598 |-0.201088 [0.201088
4 10.0406351 0.102598 [-0.201088 |0.201088
5  [-0.0428851 |0.102598 |-0.201088 [0.201088
6 [0.116379 0.102598 |-0.201088 [0.201088
7 1-0.0395987 0.102598 |-0.201088 [0.201088
8 10.109145 0.102598 |-0.201088 [0.201088
9 1-0.00122465 ]0.102598 |-0.201088 [0.201088
10 ]0.0984715 0.102598 [-0.201088 |0.201088
11 ]0.121628 0.102598 |-0.201088 [0.201088
12 |-0.0708304 ]0.102598 |-0.201088 [0.201088
13 [0.0419056  [0.102598 [-0.201088 ]0.201088
14 [-0.0658231 [0.102598 [-0.201088 ]0.201088
15 ]0.00445168 ]0.102598 |-0.201088 [0.201088
16 [-0.0493809 [0.102598 [-0.201088 ]0.201088
17 10.136926 0.102598 [-0.201088 |0.201088
18 10.070426 0.102598 [-0.201088 |0.201088
19 (0.0972204  [0.102598 [-0.201088 ]0.201088
20 |-0.11768 0.102598 [-0.201088 |0.201088
21 [-0.0247895 0.102598 |-0.201088 [0.201088
22 [-0.0703903 |0.102598 |-0.201088 [0.201088
23 10.128054 0.102598 [-0.201088 |0.201088
24 1-0.158562 0.102598 |-0.201088 [0.201088

After checking the stationary for the series (PH) and this by studying the behavior of the
autocorrelation and partial autocorrelation functions, then the next step is to determine the order of
ARIMA (p, d, q) model, so by using the estimated (ACF) and estimated (PACF) plot and also after
checking iteratively more than one ARIMA model with different orders as shown in table (5) the
suggested models are:
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Table (5) shows the suggested models and the AKAIKE (AIC) value for (PH)

Model o M AIC
AR1 0.0118 1 -419.154
AR2 0.01147 2 -420437
AR3 0.01152 3 -417975
MAL1 0.01216 1 -416.8654
MA2 0.01179 2 -417.830
MA3 0.01171 3 -416.4492
ARMA(1,1) 0.01125 2 -422.289
ARMA(1,2) 0.01136 3 -419.375
ARMA(1,3) 0.01142 4 -416.848
ARMA(2,1) 0.01146 3 -418.479
ARMA(2,2) 0.01149 4 -416.2534
ARMA(2,3) 0.01151 5 -414.1312

Therefore, the appropriate model is the ARMA (1, 1) model to monitor the process because
this model has the minimum (AIC) among all the suggested models which are equal to (-422.289).
The estimated model for the series (PH) for ARMA (1, 1) is:

X, = 0.231913 + 0.967438x,_, + &, — 0.817773¢,_, (14)

Where X, is predicted value, all values are coefficients, and &; is residual for period (t).

After selecting the appropriate model, then the final step is checking the estimated residuals
for the ARMA (1, 1) model, for this purpose the (ACF) and (PACF) plots of the estimated residuals
for (PH) series are constructed respectively in figure (4) and (5) to determine whether there is any
autocorrelation occurs in the residuals for ARMA (1, 1) model.

ARIMA(1,0,1) with constant
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Figure (4) ACF plot for estimated residual
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Figure (5) PACEF plot for estimated residual

From plotting (ACF) and (PACEF) for selected ARMA (1, 1) model for the (PH) data, it was shown
that all the coefficients fall within the following confidence limits:

1 1
—-1.96—=<r,(a;) £196—=(—-0.20109,0.20109
\/ﬁ k( t) \/ﬁ ( )

And this shows that the suggested model is an appropriate model, and this result can be supported
by the Box-Pierce test comparing with the chi-square (x?) table.

Hy:pr(a) =0 V/s Hy:pi(a) #0
Q=n3"_,r(a) =17.422 < x2(22) = 36.42 (15)

By comparing (Q) statistics with the chi — square(x?) table and (%95) confidence level
and (22) degree of freedom, the (Box-Pierce) test result revealed that the estimated residuals are
independent, therefore the ARMA (1, 1) model is the suitable model for (PH) process data.

Table (6) gives the summary for the estimated parameters of the ARIMA (1,0,1) model, and
ARIMA residual chart with the number of the out of control point, also shows the process capacity
for the (PH) process:

Table (6) shows summary for ARIMA chart & process capacity for (PH)

A | ARIMA model summary C | Estimates
Parameter estimate Process mean=7.12213
Constant 0.231913 Process sigma=0.117416
AR(1) 0.967438
MA(1) 0.817773
B | ARIMA chart D | Capability indices for PH
UCL: +3.0 sigma= 0.303206 Specifications
Center line=0.0 USL=7.47
LCL: -3.0 sigma= -0.303206 Nominal=7.12
1 beyond limits LSL=6.77
Cp=0.9936
Cpk=0.9875
Cpk(upper)=0.9875
Cpk(lower)=0.9996
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ARIMA Residual Chart jor PH
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Figure (6) ARIMA control chart for (PH)

Under the condition of normality and randomness of the residual series generated from
ARIMA (1,0,1) which shows only one point is beyond the limit and this is random and does not
have the negative effect of the (PH) process, therefore the (PH) process is in statistical control.

Tolerance Chart for PH
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Nominal: 7.12
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Figure (7) Tolerance chart for (PH)

From the table (6) it is shown that the (PH) process is not capable and it can be seen by the
capability index (Cp) which is equal to (0.9936) for the control limit (6.77, 7.47), therefore from
comparing several tolerance limit for (PH) the optimal tolerance limit for (PH) with remaining the
process is in control is equal to (6.76, 7.47) which has the capability index is equal to (1.00782) and
this shows that the suggested control limit for (PH) process is a good control limit. Therefore, the
factory should make an adjustment from the control limit (6.77, 7.47) to (6.76, 7.47) for producing
the water in the better way, also tolerance limit that used for constructing a new structure control
chart for controlling (PH) process does not allow more than (7.47).

3.2.2 ARIMA residual chart and tolerance chart For (MG) process:

To determine an appropriate ARIMA model for controlling the residuals, recognizing the
data behavior is an important step, for this purpose the plot of the time series is used to assess the
pattern and the behaviors of data. It can be seen from the figure (8) that the (MG) process under
having no trend is stationary.
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Time Series Plot for MG
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Figure (8) time series plot for (MG)

The time series plot is not enough to deciding the stationary of the series, therefore for
checking the stationary the autocorrelation function (ACF) and partial autocorrelation function
(PACF) are plotted as shown in table (7) and (8) and figure (9) and (10), it can be seen that the
value of the correlation coefficient for the series falls within the following confidence limit:

1 1
—1.96\/—ﬁ <r(a) < 1967; = (-0.20109, 0.20109)

Where (n) is the number of observation, and (k) is the lag period.

Estimated Autocorrelations for MG
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Figure (9) Estimated ACF for MG
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Table (7) shows autocorrelation coefficient for the origin data for the (MG)

Lower Upper
95.0% 95.0%
Lag |Autocorrelati |Stnd. Prob. Limit |Prob. Limit
on Error

1 ]0.102006 0.102598 {-0.201088 [0.201088

2 10.144519 0.10366 [-0.20317 0.20317

3 10.0915181 0.105759 [-0.207285 [0.207285

4 1-0.0308189 [0.10659 |-0.208913 |0.208913

5  10.0421821 0.106684 [-0.209096 [0.209096

6 [-0.000389077 [0.106859 |-0.20944  10.20944

7 10.0798009 0.106859 (-0.20944  {0.20944

8 10.029602 0.107485 [-0.210666 [0.210666

9 10.200929 0.10757 {-0.210834 [0.210834

10 [0.0616173 0.111451 |-0.21844  [0.21844

11 |-0.01664 0.111809 [-0.219142 (0.219142

12 |-0.0411777 |0.111835 |-0.219193 0.219193

13 [0.0781915 0.111995 [-0.219506 [0.219506

14 10.00904605 [0.112568 |-0.220629 ]0.220629

15 [0.0687976 0.112575 [-0.220644 [0.220644

16 (0.11848 0.113017 [-0.22151 0.22151

17 10.108522 0.114317 {-0.224058 ]0.224058

18 [0.160884 0.115396 [-0.226173 |0.226173

19 10.0187114 0.117734 {-0.230754 (0.230754

20 10.234222 0.117765 [-0.230816 [0.230816

21 [-0.0125628 [0.122571 [-0.240234 |0.240234

22 1-0.0503346 |0.122584 |-0.240261 ]0.240261

23 10.046996 0.122802 [-0.240687 [0.240687

24 [-0.0654075 [0.122991 [-0.241058 ]0.241058

Estimated Partial Autocorrelations for MG
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Figure (10) Estimated PACF for MG
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Table (8) shows the partial autocorrelation coefficient for the origin data for the (MG)

Partial Lower Upper
95.0% 95.0%
Lag |Autocorrelati |Stnd. Prob. Limit |Prob. Limit
on Error
1 ]0.102006 0.102598 |-0.201088 [0.201088
2 ]0.135524 0.102598 [-0.201088 |0.201088
3 10.066861 0.102598 |-0.201088 [0.201088
4 1-0.0657793 10.102598 |-0.201088 [0.201088
5  10.0295023 0.102598 [-0.201088 |0.201088
6 [0.00086174 0.102598 |-0.201088 [0.201088
7 10.0811833 0.102598 [-0.201088 |0.201088
8 10.00876838 ]0.102598 [-0.201088 [0.201088
9 ]0.187893 0.102598 |-0.201088 [0.201088
10 ]0.011135 0.102598 [-0.201088 |0.201088
11 [-0.0720574 [0.102598 [-0.201088 ]0.201088
12 ]-0.0851833 ]0.102598 |-0.201088 [0.201088
13 ]0.126622 0.102598 [-0.201088 |0.201088
14 10.00552175 (0.102598 [-0.201088 ]0.201088
15 ]0.0538016  ]0.102598 |-0.201088 [0.201088
16 [0.0666046  [0.102598 [-0.201088 ]0.201088
17 10.0943051 0.102598 |-0.201088 [0.201088
18 10.0754683 0.102598 [-0.201088 |0.201088
19 [-0.0405466 [0.102598 [-0.201088 ]0.201088
20 (0.232106 0.102598 [-0.201088 |0.201088
21 1-0.027971 0.102598 |-0.201088 [0.201088
22 |-0.151114 0.102598 |-0.201088 [0.201088
23 10.00334161 |0.102598 [-0.201088 |0.201088
24 [-0.0278361 |0.102598 |-0.201088 [0.201088

After checking the stationary for the series (MG) and this by studying the behavior of the
autocorrelation and partial autocorrelation functions, then the next step is to determine the order of
ARIMA (p, d, q) model, so by using the estimated (ACF) and estimated (PACF) plot and also after
checking iteratively more than one ARIMA model with different orders as shown in table (9) the
suggested models are:

Therefore, the appropriate model is the ARIMA (1,0,0) model to monitor the process
because this model has the minimum (AIC) among all the suggested models which are equal to
(146.92). The estimated model for the series (MG) for ARIMA (1,0,0) is:

X, = 5.07424 + 0.102893x,_; + &, (16)

Where X, is predicted value, all values are coefficients, and €, is residual for period (t).
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Table (9) shows the suggested models and the AKAIKE (AIC) value for (MQG)

Model 62 M AIC
AR1 4.5976 1 146.92

AR2 4.5617 2 148.18

AR3 4.5915 3 150.799
MA1 4.6081 1 147.142
MA2 4.5680 2 148.312
MA3 4.58021 3 150.56

ARMA(1,1) 4.64812 2 149.963
ARMA(1,2) 4.60679 3 151.115
ARMA(1,3) 4.6325 4 153.644
ARMA(2,1) 4.61383 3 151.260
ARMA(2,2) 4.65892 4 154.184

After selecting the appropriate model, then the final step is checking the estimated residuals
for the ARIMA (1,0,0) model, for this purpose the (ACF) and (PACF) plots of the estimated
residuals for (MG) series are constructed respectively in figure (11) and (12) to determine whether
there is any autocorrelation occurs in the residuals for ARIMA (1,0,0) model.

ARIMA(1,0,0) with constant
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Figure (11) ACF plot for estimated residual
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Figure (12) PACEF plot for estimated residual
From plotting (ACF) and (PACEF) for selected ARIMA (1,0,0) model for the (MG) data, it is shown
that all the coefficients fall within the following confidence limits:
1 1
—1.96 —= < rn,(a;) <£1.96—=(-0.20109,0.20109
\/ﬁ k( t) \/ﬁ ( )

And this shows that the suggested model is an appropriate model, and this result can be supported
by the Box-Pierce test comparing with the chi-square (x?2) table.

Hy:pp(a) =0 V/s Hy:pi(a) #0
Q=n Y r(a") = 18.7878 < x2(23) = 36.42 (17)

By comparing (Q) statistics with the chi — square (x?) table and (%95) confidence level
and (23) degree of freedom, the (Box-Pierce) test result revealed that the estimated residuals are
independent, therefore the ARIMA (1,0,0) model is the suitable model for (MG) process data.

Table (10) gives the summary for the estimated parameters of the ARIMA (1,0,0) model, and
ARIMA residual chart with the number of the out of control point, also shows the process capacity
for the (MG) process:

Table (10) shows summary for ARIMA chart & process capacity for (MG)

A | ARIMA model summary C | Estimates
Parameter estimate Process mean= 5.65623
Constant 5.07424 Process sigma=1.99443
AR(1) 0.102893
B | ARIMA chart D | Capability indices for
UCL: +3.0 sigma= 5.95152 MG
Center line=0.0 Specifications
LCL: -3.0 sigma= -5.95152 USL=11.64
1 beyond limits Nominal=5.66
LSL=-0.33
Cp=1.00029
Cpk=1.00008
Cpk(upper)=1.00008
Cpk(lower)=1.00049
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Figure (13) ARIMA control chart for (MG)

Under the condition of normality and randomness of the residual series generated from
ARIMA (1,0,0) which shows one point is beyond the limit and this is random and does not have the
negative effect of the (MG) process, therefore the (MG) process is in statistical control.

To!erance Chart for MG
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Figure (14) Tolerance chart for (MG)

From table (10) it is shown that the (MG) process is capable and the (Cp) is equal to
(1.00029) but not has the optimal tolerance limits which is equal to (-0.33, 11.64), therefore from
comparing several tolerance limits for (MG) process, the optimal tolerance limit for (MG) with
remaining the process is in control is equal to (0, 11.97) which has the capability index is equal to
(1.00029) and this shows that the suggested control limit for (MG) process is a good control limit.
Therefore, the factory should make an adjustment from the control limit (-0.33, 11.64) to (0, 11.97)

for producing the water in a better way.
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4- Conclusion:

Controlling and monitoring the production process is very important for improving the
quality of the product and reducing the costs, also using the statistics in quality control is a very
important issue for improving the product quality or keeping the process in the acceptance region
by using the most important tool the control charts. This study aimed to monitor the two important
chemical parameters of drinking water and these are Power of Hydrogen (PH) and Magnesium
(MQG), to determine if they are out of control or in control and also determining the control limits for
both (PH &MG) from the optimal tolerance limits to control the water production to reach better
quality products in the future, by taking the data for each of the parameters (PH& MG) from the
(KANISARD) factory of drinking water at (Sulaimani) city in Kurdistan region in Iraq. To achieve
this purpose, ARIMA control charts were constructed for each of the parameters, where ARIMA
residual chart is a special control chart, used to specify and detect the quality behavior in time-
correlated process data, and this type of chart is also useful for adjusting and specifying the quality
limits during the process. The result of the study showed that the estimated ARMA (1, 1) and
ARIMA (1, 0, 0) model is an adequate model for both (PH) and (MG) behaviors respectively for
constructing an identically and normally distributed residuals series. And also the models were very
helpful to achieve a non-auto-correlated residual series, which is an important tool to fit a suitable
ARIMA residual control charts for (PH) and (MG). By using the selected models of the ARIMA
residual charts for both (PH &MG) respectively it was concluded that both (PH& MG) process is in
statistical control, in addition, from the tolerance limits and capability index, the suggested control
limit for both (PH) and (MG) respectively are (UCL, LCL for PH) = (6.76, 7.47), and (UCL, LCL
for MG) = (0, 11.97) for controlling the water production and to reach the better quality products in
the future.
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